
Inside Perl 6
Concurrency

The guts beneath the goodness

Jonathan Worthington |

Make the easy things easy...

...and the hard things possible

Make the easy things easy...

...and the hard things possible

start, await .hyper.map(...)

supply/react/
whenever

monitor

Make the easy things easy...

...and the hard things possible

Threads Mutexes Condition
Variables

Semaphores Atomic Operations

start, await .hyper.map(...)

supply/react/
whenever

monitor

In this session, we'll work from the
hardware up to the higher-level
 constructs available in Perl 6

We'll build simplified versions of
those constructs, to understand
something about how they work

In this session, we'll work from the
hardware up to the higher-level
 constructs available in Perl 6

We'll build simplified versions of
those constructs, to understand
something about how they work

Of course, the ones provided by Perl
6 have been engineered for better...

Speed

Memory use
Error reporting
Debuggability

Robustness

The CPU

Core 1 Core 2 Core 3 Core 4

Core 1 Core 2 Core 3 Core 4

Cache Memory

Multiple levels of cache memory,
some per core, some shared

Intel Core i7 has per-core L1 and L2,

and shared L3 cache

Caches play a critical role in multi-
threaded program performance

Whenever data held by more than

one core's cache is updated, all other
cores with that data cached must

invalidate it

This is expensive!

Therefore...

Prefer thread-local, unshared data

When sharing data, share immutable
data (for the CPU's and your sanity!)

Try to avoid contention over data

(remember that locks are data too)

A thread is an OS-provided
mechanism for running code on a

CPU core

In Perl 6, a thread is represented by
the Thread class

my @threads = do for 1..5 -> $id {
 Thread.start: {
 say "Hi from thread $id";
 sleep 1;
 say "Bye from thread $id"
 }
}
@threads>>.join;

What will the output of this code be?

my int $i = 0;
my @threads = do for 1..5 -> $id {
 Thread.start: {
 $i++ for ^100000;
 }
}
@threads>>.join;
say $i;

How about this?

Always remember:

There is no execution ordering
between threads except that which

you explicitly arrange for

Nothing a thread does is atomic or
uninterruptible unless you explicitly

arrange for it

my atomicint $i = 0;
my @threads = do for 1..5 -> $id {
 Thread.start: {

 $i ++ for ^100000;
 }
}
@threads>>.join;
say $i;

CPUs provide atomic operations.
Perl 6 provides access to them.

Far more powerful, however, is the
atomic compare and swap operation,

commonly known as "CAS"

sub cas($reference is rw, $expected, $new) {
 my $seen = $reference;
 $reference = $new if $seen =:= $expected;
 return $seen;
}

CAS is provided by the hardware, but
we can imagine it like this - with the

guarantee that it is atomic

Amazingly, we can make any data
structure we want atomically

updateable using CAS.*

* If we follow the rules. Very, very carefully.

class ConcurrentStack {
 ...
}

Let's build a concurrent stack.

One that we can push to and pop
from multiple threads "at once".

Without locks!

class ConcurrentStack {
 my class Node {
 has $.value;
 has Node $.next;
 }
 has Node $!head;

 method push($value --> Nil) { ... }

 method pop() { ... }
}

It's a linked list of Node objects.
They're immutable. The only

mutable thing will be $!head.

method push($value --> Nil) {
 loop {
 my $next = $!head;
 my $new = Node.new: :$value, :$next;
 last if cas($!head, $next, $new) === $next;
 }
}

How does this push work?

Why do we need a loop?

method pop() {
 loop {
 my $cur = $!head;
 fail "Stack is empty" without $cur;
 if cas($!head, $cur, $cur.next) === $cur {
 return $cur.value;
 }
 }
}

The pop method is similar, except it
can fail due to an empty stack

This "loop" structure is so common,
Perl 6 provides a form of CAS that
takes a block computing the new

value based on the current one, and
does the retry loop for you

method push($value --> Nil) {
 cas $!head, -> $next {
 Node.new: :$value, :$next
 }
}

method pop() {
 my $taken;
 cas $!head, -> $current {
 fail "Stack is empty" without $current;
 $taken = $current.value;
 $current.next
 }
 return $taken;
}

Did you ever think about how a lock
is implemented?

Using CAS!

Well, at least, somewhat.

class SpinLock {
 has atomicint $!held = 0;

 method lock(--> Nil) {
 while cas($!held, 0, 1) != 0 { }
 }

 method unlock(--> Nil) {
 cas($!held, 1, 0) or die "Lock was not held";
 }
}

my int $i = 0;
my $lock = SpinLock.new;
my @threads = do for 1..5 -> $id {
 Thread.start: {
 for ^100000 {
 $lock.lock();
 $i++;
 $lock.unlock();
 }
 }
}
@threads>>.join;
say $i;

And yes, it really works...

Unfortunately, for many cases, this
kind of lock also really sucks.

Why?

my int $i = 0;
my $lock = SpinLock.new;
my @threads = do for 1..5 -> $id {
 Thread.start: {
 $lock.lock();
 $i++ for ^10000000;
 $lock.unlock();
 }
}
@threads>>.join;
say $i;

Observe the CPU usage of this:

A spinlock is only good when we are
really sure that blocking will last for

a very short amount of time.

Normally, we want to get the OS
scheduler involved.

Just like Perl 6's Lock class does.

my int $i = 0;
my $lock = Lock.new;
my @threads = do for 1..5 -> $id {
 Thread.start: {
 $lock.lock();
 $i++ for ^10000000;
 $lock.unlock();
 }
}
@threads>>.join;
say $i;

This has far lower CPU utilization:

my int $i = 0;
my $lock = Lock.new;
my @threads = do for 1..5 -> $id {
 Thread.start: {
 $lock.lock();
 $i++ for ^10000000;
 $lock.unlock();
 }
}
@threads>>.join;
say $i;

This has far lower CPU utilization:

my int $i = 0;
my $lock = Lock.new;
my @threads = do for 1..5 -> $id {
 Thread.start: {
 $lock.protect: {
 $i++ for ^10000000;
 }
 }
}
@threads>>.join;
say $i;

This form won't "leak" the lock
should an exception occur:

But Lock is still hard to use correctly:

Must remember to acquire the lock

Must not leak lock-protected data

Risk of deadlocks due to circular lock
dependencies

It turns out that OO done right
(which it too rarely is, alas) can help!

class Index {
 has $!lock = Lock.new;
 has %!index{Str};

 method add(Str $word, Str $document --> Nil) {
 $!lock.protect: { ... }
 }

 method lookup(Str $word --> List) {
 $!lock.protect: { ... }
 }

 method elems(--> Int) {
 $!lock.protect: { ... }
 }
}

Use a Lock to protect object state:

method add(Str $word, Str $document --> Nil) {
 $!lock.protect: {
 %!index{$word}{$document} = True;
 }
}

method elems() {
 $!lock.protect: {
 %!index.elems
 }
}

Methods that only mutate, or that
return immutable values, are easy:

method lookup(Str $word) {
 $!lock.protect: {
 with %!index{$word} { .keys.eager }
 else { () }
 }
}

Those returning more interesting
data must ensure it is completely
independent of the object's state,
which the lock is there to protect

But surely we can do better than
wrapping a protect call around all

of our method bodies?

Indeed we can. OO::Monitors gives
us a monitor keyword to use in
place of class, and enforces the

locking for us.

use OO::Monitors;

monitor Index {
 has %!index{Str};

 method add(Str $word, Str $document --> Nil) {
 %!index{$word}{$document} = True;
 }

 method lookup(Str $word) {
 with %!index{$word} { .keys.eager }
 else { () }
 }

 method elems() {
 %!index.elems
 }
}

Some more problems:

A thread is a pretty heavyweight unit
of parallel work

Leaves us to convey results or errors

back to the code that wants them

Let's build a thread pool!

Work is put into a queue

Workers in the pool compete to take
tasks out of the work queue and

complete them

class WorkQueue {
 has Callable @!work;
 has $!lock = Lock.new;
 has $!not-empty = $!lock.condition();

 method enqueue(&task --> Nil) {
 ...
 }

 method dequeue(--> Callable) {
 ...
 }
}

Condition variables efficiently block
a thread until a condition is met

method enqueue(&task --> Nil) {
 $!lock.protect: {
 my $was-empty = @!work == 0;
 push @!work, &task;
 $!not-empty.signal if $was-empty;
 }
}

method dequeue(--> Callable) {
 $!lock.protect: {
 while @!work == 0 {
 $!not-empty.wait;
 }
 @!work.shift
 }
}

sub start-worker(WorkQueue $queue) {
 Thread.start: {
 loop {
 my &task = $queue.dequeue;
 task();
 }
 }
}

A worker sits in a loop, taking work
from the queue and doing it

my $queue = WorkQueue.new;
start-worker($queue) xx 4;

for 1..10 -> $i {
 $queue.enqueue: {
 say "Task $i starting";
 sleep 0.5;
 say "Task $i done"
 }
}

sleep;

What output will this produce?

for 1..10 -> $i {
 $*SCHEDULER.cue: {
 say "Task $i starting";
 sleep 0.5;
 say "Task $i done"
 }
}

sleep;

And here's how we use the built-in
Perl 6 thread pool scheduler instead:

In reality...

Number of workers scaled by CPU
core count and demand

Separate queues for stream-y data

(to give thread affinity), time-
sensitive events, and general work

And also...

The work queue has separate head
and tail locks to reduce contention

Queue is implemented at VM level,
such that we can push I/O events,
timer events, signals, etc. into it

But how can we more conveniently
convey completion and a result, or

the failure of, queued work?

A Promise is one way.

Let's build one!

class SimplePromise {
 enum State <Planned Kept Broken>;
 has State $.state = Planned;
 has $!result;
 has $!lock = Lock.new;
 has $!completed = $!lock.condition();

 method keep($result --> Nil) { ... }
 method break(Exception $cause --> Nil) { ... }
 method result() { ... }
}

A Promise starts out Planned, and
can either be Kept or Broken

method keep($result --> Nil) {
 $!lock.protect: {
 unless $!state == Planned {
 die "Too late to keep";
 }
 $!result = $result;
 $!state = Kept;
 $!completed.signal_all();
 }
}

Keeping the Promise (note that we
signal_all as many things may

wait on its completion):

method result() {
 $!lock.protect: {
 while $!state == Planned {
 $!completed.wait();
 }
 if $!state == Kept {
 $!result
 }
 else {
 $!result.rethrow
 }
 }
}

The result method blocks on the
Promise being kept or broken:

sub simple-start(&code) {
 my $p = SimplePromise.new;
 $*SCHEDULER.cue: {
 $p.keep(code());
 CATCH {
 default {
 $p.break($_);
 }
 }
 }
 return $p;
}

We can now implement start:

In reality...

Protects against double keep/break

Some tricks to reduce locking

Fancier error reporting

But the biggest difference is await...

The problem:

If calling result blocks a pool
thread, it can't do anything else

Can spawn extra threads, but this

won't scale to tens of thousands of
outstanding awaits

Divide and Conquer: Merge Sort

sub merge-sort(@values, $from = 0, $elems = @values.elems) {
 if $elems > 1 {
 my $divide = ($elems / 2).ceiling;
 merge
 merge-sort(@values, $from, $divide),
 merge-sort(@values, $from + $divide, $elems - $divide)
 }
 elsif $elems == 1 {
 (@values[$from],)
 }
 else {
 Empty
 }
}

Parallelize it!

sub parallel-merge-sort(@values, $from = 0,
 $elems = @values.elems) {
 if $elems > 500 {
 my $divide = ($elems / 2).ceiling;
 my ($left, $right) = await
 (start parallel-merge-sort(@values, $from, $divide)),
 (start parallel-merge-sort(@values, $from + $divide,
 $elems - $divide));
 merge $left, $right
 }
 else {
 merge-sort @values, $from, $elems
 }
}

Perl 6.c vs. Perl 6.d

In 6.c, this spawns a ton of threads. If
there's really a lot of elements, it

could reach the pool's upper limit.

And Perl 6.d, it spawns threads up to
the number of CPU cores. No risk of

deadlocking due to running out.

What's changed in Perl 6.d?

An await on a thread pool worker
takes a continuation

Schedules it to be resumed - quite

possibly on a different real thread -
once the result is available

Finally...

A Promise is fine for a single value
produced asynchronously

But what about streams of

asynchronous values, like timer ticks,
GUI events, or data from a socket?

That's what a Perl 6 Supply is for

It's just the observer pattern, really

The Three Events

Emit: an event (packet, timer tick...)
Done: successful end of stream
Quit: exception end of stream

role SimpleTappable {
 method tap(&emit, &done, &quit) { ... }
}

A Tap

A subscription, with an optional
callback upon close (unsubscription)

class SimpleTap {
 has &.on-close;
 method close(--> Nil) {
 .() with &!on-close;
 }
}

The Supply wrapper

Holds a Tappable implementation
and delegates to it

class SimpleSupply {
 has SimpleTappable $.tappable is required;

 my constant DISCARD = -> $ {};
 my constant NOP = -> {};
 my constant DEATH = -> $ex { $ex.throw };
 method tap(&emit = DISCARD, :&done = NOP, :&quit = DEATH) {
 $!tappable.tap(&emit, &done, &quit)
 }

 # Many built-in methods here
}

An interval factory

my class Interval does SimpleTappable {
 has $.scheduler;
 has $.interval;
 has $.delay;

 method tap(&emit, &, &) {
 my $i = 0;
 my $cancellation = $!scheduler.cue(
 { emit($i++) },
 :every($!interval), :in($!delay)
);
 SimpleTap.new(on-close => { $cancellation.cancel });
 }
}
method interval($interval, $delay = 0, :$scheduler = $*SCHEDULER) {
 SimpleSupply.new:
 tappable => Interval.new(:$interval, :$delay, :$scheduler)
}

Asynchronous map
my class Map does SimpleTappable {
 has $.source;
 has &.mapper;
 method tap(&emit, &done, &quit) {
 my $source-tap = $!source.tap: :&done, :&quit, {
 emit(&!mapper($_));
 CATCH {
 default {
 $source-tap.close;
 quit($_);
 }
 }
 };
 SimpleTap.new(on-close => { $source-tap.close })
 }
}
method map(&mapper) {
 SimpleSupply.new:
 tappable => Map.new(source => self, :&mapper)
}

That's enough for reactive fizzbuzz

sub fizzbuzz($v) {
 $v %% 3 && $v %% 5 ?? 'fizzbuzz' !!
 $v %% 3 ?? 'fizz' !!
 $v %% 5 ?? 'buzz' !!
 $v
}
my $tap = SimpleSupply
 .interval(0.3)
 .map(*+1)
 .map(&fizzbuzz)
 .tap(&say);
sleep 5;
$tap.close;

In reality...

Supply concurrency control is
complex enough we'd need another

talk this length to cover its
implementation in detail

Lots of trickiness around recursive

and synchronous messaging

In closing...

Perl 6 provides access to concurrency
and parallelism primitives

However, most of the time, we're

better off building our applications
using the high-level things built in

terms of them

Building those higher-level things
isn't simple. But it's complexity that

we take out of your code.

At the same time, a basic idea of
what they are doing can be helpful.

I hope this talk has provided that.

Thank you!

Questions?

