
Introduction to Cro

Building and consuming services in
Perl 6

Jonathan Worthington |

What is Cro?

A set of libraries and tools for
building distributed systems in Perl 6

Useful for both consuming existing
services, building new services, and
building entire systems of services

What is a distributed system?

One involving multiple processes
that communicate with each other

These may be spread over many
different machines, datacenters,

countries, etc.

"First, do one thing well"

We're focusing first on HTTP services,
since they're such a common choice

Also early work on ZeroMQ

Many ideas for the future

Built for Perl 6

Cro isn't a Perl 6 port of anything

It's a ground-up implementation,
designed to feel natural to Perl 6

programmers and to make the most
of what Perl 6 has to offer

Who?

Cro development is sponsored by
Edument (we also provide Cro

support and consulting)

Open Source (Artistic License), more
than a dozen contributors so far

A look at
Perl 6

Supplies

What is a Supply?

An asynchronous stream of values

Finite or infinite

If finite, may terminate naturally or
exceptionally

Dual of iteration

Iterables pull values through a
pipeline

Supplies push values through a

pipeline

A Supply of timer ticks

We tap a Supply to start the flow
of values, providing a handler

my $ticks = Supply.interval(0.5);
my $tap = $ticks.tap: {
 say now;
}
sleep 3;
$tap.close;

Syntactic relief

The react/whenever construct for
processing asynchronous data

react {
 whenever Supply.interval(0.5) {
 say now;
 }
 whenever Promise.in(3) {
 done;
 }
}

Totally cheating HTTP client

my $socket = await IO::Socket::Async.connect:
 'moarvm.org', 80;
await $socket.print:
 "GET / HTTP/1.0\r\nHost: moarvm.org\r\n\r\n";
react {
 whenever $socket -> $chars {
 print $chars;
 }
}

Totally cheating HTTP server

react {
 whenever IO::Socket::Async.listen('0.0.0.0', 8080)
 -> $conn {
 whenever $conn {
 whenever $conn.print:
 "HTTP/1.0 200 OK\r\n" ~
 "Content-type: text/plain\r\n\r\n" ~
 "Wow a HTTP response!\n" {
 $conn.close;
 }
 }
 }
}

The supply construct

Process one or more asynchronous
streams, and emit values into a

result stream

Automatic concurrency control (one
message at a time), like react

class TimedOut is Exception {
 method message() { "Timed out" }
}

sub timeout(Supply() $s, Real() $seconds) {
 supply {
 sub refresh-timeout() {
 state $tap;
 $tap.?close;
 $tap = do whenever Promise.in($seconds) {
 die TimedOut.new;
 }
 }
 whenever $s -> $msg {
 refresh-timeout;
 emit $msg;
 }
 refresh-timeout; # Set initial timeout
 }
}

react {
 whenever IO::Socket::Async.listen('0.0.0.0', 8080)
 -> $conn {
 whenever timeout($conn, 10) {
 whenever $conn.print:
 "HTTP/1.0 200 OK\r\n" ~
 "Content-type: text/plain\r\n\r\n" ~
 "Wow a HTTP response!\n" {
 $conn.close;
 }
 QUIT {
 when TimedOut {
 $conn.close;
 }
 }
 }
 }
}

Reactive
Pipelines

in Cro

Cro is centered around pipelines -
chains of Supply processors

These pipelines are made up of
components that are composed
together to form a client, server,

message processor, etc.

As a really simple example, we'll
built a TCP service that will apply
ROT13 to anything it is sent, and
send the result back to the client

use Cro;
use Cro::TCP;

class Rot13 does Cro::Transform {
 method consumes() { Cro::TCP::Message }
 method produces() { Cro::TCP::Message }
 method transformer(Supply $messages --> Supply) {
 supply {
 whenever $messages {
 emit Cro::TCP::Message.new: data =>
 .data.decode('latin-1')
 .trans('a..mn..z' => 'n..za..m', :ii)
 .encode('latin-1')
 }
 }
 }
}

First, write a transform

Compose it into a service and run it

Connection management and
response sending provided

automatically in composition

my Cro::Service $rot13 = Cro.compose:
 Cro::TCP::Listener.new(:host<0.0.0.0>, :port<10000>),
 Rot13;

$rot13.start;
react whenever signal(SIGINT) { $rot13.stop; done }

How about a HTTP pipeline?

use Cro::HTTP::Request;
use Cro::HTTP::Response;

class MyApp does Cro::Transform {
 method consumes() { Cro::HTTP::Request }
 method produces() { Cro::HTTP::Response }
 method transformer(Supply $reqs) {
 supply whenever $reqs -> $request {
 my $res = Cro::HTTP::Response.new(
 :$request, :200status);
 $res.append-header('Content-type',
 'text/plain');
 $res.set-body("Hello from Cro\n");
 emit $res;
 }
 }
}

Again, we write a transform...

use Cro
use Cro::TCP;
use Cro::HTTP::RequestParser;
use Cro::HTTP::ResponseSerializer;

my Cro::Service $http-hello = Cro.compose:
 Cro::TCP::Listener.new(:host<0.0.0.0>, :port<10000>),
 Cro::HTTP::RequestParser.new,
 MyApp,
 Cro::HTTP::ResponseSerializer.new;

$http-hello.start;
react whenever signal(SIGINT) { $http-hello.stop; done; }

...and compose it into a service

use Cro
use Cro::TCP;
use Cro::HTTP::RequestParser;
use Cro::HTTP::ResponseSerializer;
use Cro::HTTP::Log::File;

my Cro::Service $http-hello = Cro.compose:
 Cro::TCP::Listener.new(:host<0.0.0.0>, :port<10000>),
 Cro::HTTP::RequestParser.new,
 MyApp,
 Cro::HTTP::Log::File.new,
 Cro::HTTP::ResponseSerializer.new;

$http-hello.start;
react whenever signal(SIGINT) { $http-hello.stop; done; }

Want logging? Just add it!

Many web libraries and frameworks
have a concept of middleware

In Cro, everything - the network I/O,

the request parser, the response
serializer - is middleware

The pipeline level is all plumbing.

It's flexible. It's not very opinionated.

And it's not what you'd want to work
with directly most of the time either.

So, to borrow Git's terminology, Cro
comes with porcelain too.

This is what most Cro users work

with most of the time.

The Cro
HTTP

Porcelain

use Cro::HTTP::Server;
use Cro::HTTP::Log::File;

my Cro::Service $http-hello = Cro::HTTP::Server.new:
 :host<0.0.0.0>, :port<10000>,
 :ssl{
 private-key-file => 'server-key.pem',
 certificate-file => 'server-crt.pem';
 },
 :application(MyApp),
 :after[Cro::HTTP::Log::File.new];
$http-hello.start;
react whenever signal(SIGINT) { $http-hello.stop; done; }

Cro::HTTP::Server builds
 HTTP server pipelines

Cro::HTTP::Router provides a
nice way to write request handlers

And the thing a route block returns
is a Cro::Transform from requests

to responses

use Cro::HTTP::Router;
my $application = route {
 get -> {
 content 'text/plain', "Hello from Cro\n";
 }
}

The router uses Perl 6 signatures to
specify the routes, as well as other

requirements on the request

Also has a bunch of functions to help
with constructing responses

get -> 'greet', $name {
 content 'text/plain', "Hello, $name\n";
}

Literals and positional parameters
match URI path segments

Named parameters are sourced from
the query string, by default

get -> 'greet', $name, :$greeting = 'hello' {
 content 'text/plain', "$greeting.tclc(), $name\n";
}

Slurpy parameters match an
arbitrary number of path segments -

very handy when serving assets

(Includes protection against ../ hackery too!)

get -> 'css', *@path {
 static 'static-content/css', @path;
}

get -> 'js', *@path {
 static 'static-content/js', @path;
}

Use type constraints, including
subset types, to restrict the

allowable values of route segments,
query string values, etc.

my subset UUIDv4 of Str where /^
 <[0..9a..f]> ** 12
 4 <[0..9a..f]> ** 3
 <[89ab]> <[0..9a..f]> ** 15
 $/;

get -> 'user-log', UUIDv4 $id {
 ...
}

The request object has an auth
property, settable by authorization

or session middleware

Provided the type in there does the
Cro::HTTP::Auth role, it can be
taken - and maybe constrained -

ahead of the route segments

Declare subset types for authorization needs
my subset Admin of My::App::Session where .is-admin;
my subset LoggedIn of My::App::Session where .is-logged-in;

my $application = route {
 get -> LoggedIn $user, 'my', 'profile' {
 # Use $user in some way
 }

 get -> Admin, 'system', 'log' {
 # Just use the type and don't name a variable, if
 # the session/user object is not needed
 }
}

Appropriate HTTP error codes

Route segments don't match  404

Method doesn't match  405

Auth doesn't match  401

Query string doesn't match  400

Support for HTTP/2 push promises

Silently ignored for HTTP/1 requests

get -> {
 push-promise '/css/global.css';
 push-promise '/css/main.css';
 content 'text/html', $some-content;
}

get 'css', *@path {
 cache-control :public, :maxage(300);
 static 'assets/css', @path;
}

Cro::HTTP::Router::WebSocket

my $chat = Supplier.new;
get -> 'chat' {
 web-socket -> $incoming, $close {
 supply {
 whenever $incoming -> $message {
 $chat.emit(await $message.body-text);
 }
 whenever $chat -> $text {
 emit $text;
 }
 whenever $close {
 $chat.emit("A user left the chat");
 }
 }
 }
}

Use include to compose routes

module FooApp::Search;
sub search-routes is export {
 route {
 get -> :$query {
 ...
 }
 }
}

use FooApp::Search;
my $app = route {
 # Prefix with /search
 include search => search-routes();
}

The include function only works
with other route blocks

By contrast, delegate works with
any Cro::Transform that turns a

request into a response - so anything
can be mounted there

Body parsing/serialization

post -> 'product' {
 # When it's application/json, and destructures as
 # required, process it. Otherwise, 400 Bad Request.
 request-body 'application/json' => -> (
 Str :$name!,
 Str :$description!,
 Real :$price! where * > 0) {
 # Store stuff.
 my $id = $store.add-product($name, $description,
 $price);

 # Send JSON response.
 content 'application/json', { :$id };
 }
}

Built-in support for URL-encoded and
multi-part form data, and JSON

Can plug in your own body parsers

and serializers, at the server level or
just within a given route block

Per route block middleware

Before any matching route in this block
before My::Request::Middleware;

After processing any matching route in this block
after My::Response::Middleware;

For simple things, block form of before/after middleware
before {
 unless .connection.peer-host eq '127.0.0.1' | '::1' {
 forbidden;
 }
}
after {
 header 'Strict-transport-security',
 'max-age=31536000; includeSubDomains'
}

Requests are processed in the Perl 6
thread pool, so applications handle

parallel requests automatically

Did I mention there's also a
Cro::HTTP::Client?

Just one example - to show how to
receive HTTP/2 push promises 

use Cro::HTTP::Client;

my $client = Cro::HTTP::Client.new(:http<2>, :push-promises);
my $resp = await $client.get($uri);

react whenever $resp.push-promises -> $pp {
 whenever $pp.response -> $resp {
 whenever $resp.body-blob -> $blob {
 say "Push of $pp.target() " ~
 "(status: $resp.status(), bytes: $blob.bytes())";
 }
 QUIT {
 default {
 # Ignore cancelled push promises
 }
 }
 }
}

The client handles...

HTTPS, HTTP/2.0
Persistent connections

Pluggable body parsers/serializers
Streaming response bodies

Automatic redirect following
Optional cookie jar (pluggable too)

Closing
Remarks

This is just the beginning for what
we'd like to achieve with Cro

However, judging by feedback from
early adopters, it's already a useful

and interesting beginning

Learn more:
http://cro.services/

IRC:

#cro on freenode.org

Twitter:
@croservices

Thank you!

Questions?

