
Escape analysis and related
optimizations for Perl 6

Jonathan Worthington
Edument

Programs that we want to
develop and maintain

Programs that we want the
computer to run

Optimizer

Objects

 Gather together related data and
functionality

 Let us work at a higher level of
abstraction

 Provide polymorphism

Lots of simple things in
Perl 6 are objects

Boxes
Int
Num
Str

Numeric-ish
Complex
Date

DateTime
Rat

Range Containers
Scalar
Array
Hash

Objects

− Cost of method resolution
− Allocations mean more memory

pressure and more time doing
garbage collection

− Harder to analyze/optimize the
program

Cost of method resolution:
largely a solved problem

Most code is not polymorphic

Produce specialized versions for the
precise type(s) that are really used

Resolve at optimization time, and

inline smaller methods

Objects

− Cost of method resolution Solved
− Allocations mean more memory

pressure and more time doing
garbage collection EA?

− Harder to analyze/optimize the
program EA?

The memory challenge

for @values -> $v {
 # Allocate a Scalar $sv
 # sin returns a boxed Num
 my $sv = $v.sin;
 # + returns a boxed Num
 do-something(1e0 + $sv);
}

The memory challenge

Objects are allocated in the GC
nursery: a big blob of memory

When it's full, we garbage collect

Scalar Num Num Scalar Num Num

Next
allocation

here

The memory challenge

Obvious consequence:
The quicker we fill the nursery, the

more often we have to do GC, and so
the more time we spend on GC

Less obvious consequence:

Objects are spread through memory,
so we get lots of CPU cache misses

The analysis challenge

Assign a value to a property
$obj.x = 21;
Call some method on the object.
$obj.do-stuff();
Do we know what $obj.x is?
say 2 * $obj.x;

The analysis challenge

Objects may be referenced from
many places

Anything holding the reference

might modify it

Might even be done by code running
in another thread

Speculative optimization

Partly thanks to objects, we often
can't prove properties of programs
in order to produce optimizations

However, we can speculatively

optimize, so long as we can fall back
to unoptimized code if we're wrong

Guards + deopt

Keep statistics about what types
tend to show up

If the type is stable, insert a guard: a
quick check we got what we wanted

If the guard fails, deoptimize (fall

back to the interpreter)

Guards + deopt

Runtime cost to evaluate guards

Retention of state to enable deopt

Take up space in the instruction
stream, hitting the instruction cache,

and perhaps pushing code over
inline limits

We can't reason about the
scope and lifetimes of all

objects.

But surely we can reason
about some of them?

Yes!

And this is precisely what
escape analysis does!

Take each object allocation in the
code under consideration

Consider each instruction that

involves that object

If an instruction causes the object to
gain a reference that we can't track,

we consider it to have escaped

for @values -> $v {
 # $sv escapes to `+` below,
 # thus the resulting Num of
 # $v.sin also escapes
 my $sv = $v.sin;
 do-something(1e0 + $sv);
}

But...

Inlining!

for @values -> $v {
 # $sv is only used in decont, so does not
 # escape; nor does the Num assigned into it
 my $sv = nqp::box_n(
 nqp::sin_n(nqp::unbox_n($v)),
 Num);
 # do-something not inlined, so Num escapes
 do-something(nqp::box_n(
 nqp::add_n(
 1e0,
 nqp::unbox_n(nqp::decont($sv))),
 Num));
}

Great, but what can we do
with this information?

Scalar Replacement!

Not actually anything to do with Perl 6
Scalar, although it works on them

Create a local variable to hold each

object attribute

Delete allocation, rewrite all attribute
reads and writes into locals

Before Scalar Replacement

for @values -> $v {
 # $sv is only used in decont, so does not
 # escape; nor does the Num assigned into it
 my $sv = nqp::box_n(
 nqp::sin_n(nqp::unbox_n($v)),
 Num);
 # do-something not inlined, so Num escapes
 do-something(nqp::box_n(
 nqp::add_n(
 1e0,
 nqp::unbox_n(nqp::decont($sv))),
 Num));
}

Scalar Replacement: Step 1

Approximation; this is done at bytecode level
for @values -> $v {
 # Scalar has $!value and $!descriptor
 my ($sv_value, $sv_descriptor);
 # Attribute write binds to a variable
 $sv_value := nqp::box_n(
 nqp::sin_n(nqp::unbox_n($v)),
 Num);
 # Attribute read uses the variable
 do-something(nqp::box_n(
 nqp::add_n(
 1e0, nqp::unbox_n($sv_value)),
 Num));
}

Scalar Replacement: Step 2

Approximation; this is done at bytecode level
for @values -> $v {
 # Variables for Scalar attributes (unused!)
 my ($sv_value, $sv_descriptor);
 # Variable for the num inside the Num box
 my num64 $temp_value =
 nqp::sin_n(nqp::unbox_n($v));
 # Attribute read (unbox) uses the variable
 do-something(nqp::box_n(
 nqp::add_n(1e0, $temp_value),
 Num));
}

Scalar Replacement Result

Approximation; this is done at bytecode level
for @values -> $v {
 do-something(nqp::box_n(
 nqp::add_n(
 1e0,
 nqp::sin_n(nqp::unbox_n($v))),
 Num));
}

2 less memory allocations per iteration

Got rid of the guard on the read of
$!value from Scalar

In fact, the entire Scalar container

simply went away

Got rid of some box/unbox

So, how is this actually done?

Unfortunately, it's a bit harder than the
Perl 6 example made it look!

Hard enough that the full thing is still

several months/headaches away

Let's start with the "basics", which are
in the latest Rakudo/MoarVM releases

Two steps

1. Perform an abstract interpretation
of the program, looking for object
allocations, and preparing a set of
transforms that, if applied, would
result in scalar replacement of the
allocated objects.

2. For the allocations that didn't
escape, perform the transforms.

Abstract Interpretation

A program analysis technique

Simulate running the program, but
without having real values

Pay attention to the instructions that
are interesting for the analysis that is

being performed

AI: allocations

fastcreate r10(2), Scalar

Allocated Type Aliases Replacements Escapes Transforms

Scalar r10(2) h1: $!value
h2: $!descriptor

No Delete allocation

Allocate hypothetical replacement registers
for each attribute, and record a transform

to delete the allocation instruction

AI: aliases

set r5(3), r10(2)

Allocated Type Aliases Replacements Escapes Transforms

Scalar r10(2)
r5(3)

h1: $!value
h2: $!descriptor

No Delete allocation
Delete set

Add the target register to the set of those
aliasing the allocation, and add a transform

to delete the set instruction

AI: write attribute

p6obind r5(3), offset(16), r2(1)

Allocated Type Aliases Replacements Escapes Transforms

Scalar r10(2)
r5(3)

h1: $!value
 + facts of r2(1)
h2: $!descriptor

No Delete allocation
Delete set
p6obind set h1, r2(1)

Add a transform that turns the attribute
bind instruction into a set instruction into

the replacement register; stash facts

AI: read attribute

p6oget r4(2), r5(3), offset(16)

Allocated Type Aliases Replacements Escapes Transforms

Scalar r10(2)
r5(3)

h1: $!value
 + facts of r2(1)
h2: $!descriptor

No Delete allocation
Delete set
p6obind set h1, r2(1)
p6oget set r4(2), h1

Add a transform that will turn the attribute
get instruction into a set instruction that

reads the replacement register; track facts

+ facts(r4(2)) = facts(r2(1))

AI: guard

guardtype r4(2), Num

Allocated Type Aliases Replacements Escapes Transforms

Scalar r10(2)
r5(3)

h1: $!value
 + facts of r2(1)
h2: $!descriptor

No Delete allocation
Delete set
p6obind set h1, r2(1)
p6oget set r4(2), h1
Delete guard

Check if the facts we propagated can be
used to prove the type the guard asserts;

add a transform to delete it if so

+ facts(r4(2)) = facts(r2(1))

AI: allocations, again

fastcreate r14(1), Num

This is just another allocation; make a new
entry into the tracked allocations table

Allocated Type Aliases Replacements Escapes Transforms

Scalar r10(2)
r5(3)

h1: $!value
 + facts of r2(1)
h2: $!descriptor

No Delete allocation
Delete set
p6obind set h1, r2(1)
p6oget set r4(2), h1
Delete guard

Num r14(1) h3: $!value (num64) No Delete Allocation

+ facts(r4(2)) = facts(r2(1))

AI: the return instruction

return_o r14(1)

The allocated value escapes by being
returned

Allocated Type Aliases Replacements Escapes Transforms

Scalar r10(2)
r5(3)

h1: $!value
 + facts of r2(1)
h2: $!descriptor

No Delete allocation
Delete set
p6obind set h1, r2(1)
p6oget set r4(2), h1
Delete guard

Num r14(1) h3: $!value (num64) Yes Delete Allocation

+ facts(r4(2)) = facts(r2(1))

Transform application

The transforms for the Num are discarded
because it escapes. The Scalar ones are

applied to the program.

Allocated Type Aliases Replacements Escapes Transforms

Scalar r10(2)
r5(3)

h1: $!value
 + facts of r2(1)
h2: $!descriptor

No Delete allocation
Delete set
p6obind set h1, r2(1)
p6oget set r4(2), h1
Delete guard

Num r14(1) h3: $!value (num64) Yes Delete Allocation

But what if we deopt?

The code we performed scalar
replacement on may have guards

The unoptimized code expects the real

objects to be available

Therefore, we must materialize the
required replaced objects on deopt

AI: deopt instructions (1)

guardconc r9(2), Int # deopt 12

Allocated Type Aliases Replacements Escapes Transforms

Scalar r10(2)
r5(3)

h1: $!value
 + facts of r2(1)
h2: $!descriptor

No Delete allocation
Delete set
p6obind set h1, r2(1)
p6oget set r4(2), h1
Deopt@12: h1,h2r5

Check if r10(2) and r5(3) are needed if we
deopt at this point; if so, add a transform to

add a materialization table entry

AI: deopt instructions (2)

guardconc r9(2), Int // deopt 12

Allocated Type Aliases Replacements Escapes Transforms

Scalar r10(2)
r5(3)

h1: $!value
 + facts of r2(1)
h2: $!descriptor

No Delete allocation
Delete set
p6obind set h1, r2(1)
p6oget set r4(2), h1
Deopt@12: h1,h2r5
Deopt usage of h1 @ 12
Deopt usage of h2 @ 12

Also need to make sure that replacement
registers aren't optimized away

The algorithm defined so far is
implemented and enabled by default as

of MoarVM 2019.02

Doesn't handle transitive references

Objects in a SSA version merge escape

Can't analyze code in loops

It's limited.

But on some benchmarks, it's still
measurably effective.

class Point {
 has $.x;
 has $.y;
}
my $total = 0;
for ^1_000_000 {
 my $p = Point.new(x => 2, y => 3);
 $total = $total + $p.x + $p.y;
}
say $total;

Perl 5 version, for comparison
use v5.10;

package Point;
sub new {
 my ($class, %args) = @_;
 bless \%args, $class;
}
sub x {
 my $self = shift;
 $self->{x}
}
sub y {
 my $self = shift;
 $self->{y}
}

package main;
my $total = 0;
for (1..1_000_000) {
 my $p = Point->new(x => 2, y => 3);
 $total = $total + $p->x + $p->y;
}
say $total;

0

0.2

0.4

0.6

0.8

1

1.2

Perl 5 Perl 6, no EA Perl 6, basic EA

Point Object Benchmark

Time (s)

And that's just from eliminating...
The Scalar $p

A Hash inside of construction
Various guards

The current algorithm still misses...

The Point object itself
The Scalars of Point's attributes

The $total and various Ints
And all of their associated guards

All of which will be possible in the future!

In progress: transitive references

What if one allocation we might replace
is bound into the attribute of another

allocation we might replace?

fastcreate r10(2), Scalar
fastcreate r14(1), Num
p6obind_n r14(1), offset(16), r2(1)
p6obind r10(2), offset(16), r14(1)

In 2019.02: the Num is considered to escape

AI: transitive references

p6obind r10(2), offset(16), r14(1)

Add a transform to totally delete the bind,
and add the replacement register as an alias

Allocated Type Aliases Replacements Escapes Transforms

Scalar r10(2) h1: $!value
 + facts(r14(1))
h2: $!descriptor

No Delete allocation
Delete p6obind

Num r14(1)
h1

h3: $!value (num64) No Delete Allocation

Transitive references: deopt?

Will need to materialize the "inner"
object into the replacement register

To handle circular references, will also

have to do two passes: allocate all
objects, then populate attributes

Not implemented but...nothing seems

broken. Need more tests!

And what next?

Partial Escape Analysis

Some objects only escape along some -
perhaps rare - code paths

Or perhaps they escape near the end of

a body of code that uses them

Do replacement up to the escape point

Need heuristics for when not to do it

Handle P6bigint

A Perl 6 Int isn't a straight boxing; it
may be a native int or a big integer

In the big integer case, it's a pointer to

a malloc'd bit of memory

We must not leak this!
We must not double-free this!

Handle SSA merges

An object register is assigned on both sides
of a branch, and used after it

Naively: just materialize

Might be aliases to the same replacement

If they're the same type and both scalar

replaced, can we avoid materializing?

Handle loops

Don't know what escapes on the back
edge, because we didn't analyze that far

Take what we know as a first estimate

Once all back-edges are processed, do the
abstract interpretation on the loop again

Iterate to a fixed point

Handle loops: OSR!

We use On Stack Replacement to replace
the code running in a hot loop with the

optimized version

It's like a reverse deopt

Consequence: we'll need to take scalar
replaced objects apart during OSR!

Other representations?

For now, only considering P6opaque

Could we apply EA to a hash where all keys
used are constants?

A small fixed-size array's slots?

A CPointer wrapper in native bindings?

In summary...

Perl 6 involves lots of objects

(Partial) Escape Analysis allows us to
reason about their scope and lifetime

We can use this to deconstruct objects,
eliminating or deferring their allocation

This "scalar replacement" allows for many

further optimizations

Thank you!

Questions?

