
RakuAST: a foundation
for Raku macros

Jonathan Worthington
Edument

Two questions that
 you may already have

What on earth is an

AST?

AST
≈

What compiler folk call a
Document Object Model for

a programming language

Who on earth are

you?

I do Raku things...
Rakudo compiler architect

MoarVM founder and architect
Raku concurrency designer

Founder of Cro

I do Raku things...
Rakudo compiler architect

MoarVM founder and architect
Raku concurrency designer

Founder of Cro

And lead a team at Edument
building developer tooling...

Including the Comma IDE for Raku
IntelliJ platform consultancy

Compiler/language design consultancy

The motivation
for making an AST form of Raku part of the language

The design
of RakuAST, and a compiler based around it

The progress
on implementing RakuAST so far

The impact
of RakuAST on Raku users

The motivation
for making an AST form of
Raku part of the language

"It'd be cool to
have macros!"

"It'd be cool to
have macros!"

"It'd be cool to
have macros!"
I mean, it would be, but it's only one

motivation for all of this work...

There's more
than one way to

macro...

Textual macros
(a la C)

Textual macros
(a la C)

I'm not saying textual
macros aren't fun...

#define do {
#define end }

int main() do
 printf("Phew, no curlies!\n");
end

I mean, they are fun, until
some day they aren't.

#define THING_HEADER_SIZE 16
#define THING_BODY_SIZE 40
#define THING_SIZE \
 THING_HEADER_SIZE + THING_BODY_SIZE

// Allocate memory for things.
Thing *things = malloc(
 num_things * THING_SIZE);

// Allocate memory for things.
Thing *things = malloc(
 num_things * THING_SIZE);

#define THING_HEADER_SIZE 16
#define THING_BODY_SIZE 40
#define THING_SIZE \
 THING_HEADER_SIZE + THING_BODY_SIZE

// Allocate memory for things.
Thing *things = malloc(
 num_things * THING_HEADER_SIZE +
 THING_BODY_SIZE);

#define THING_HEADER_SIZE 16
#define THING_BODY_SIZE 40
#define THING_SIZE \
 THING_HEADER_SIZE + THING_BODY_SIZE

// Allocate memory for things.
Thing *things = malloc(
 num_things * 16 + 40);

#define THING_HEADER_SIZE 16
#define THING_BODY_SIZE 40
#define THING_SIZE \
 THING_HEADER_SIZE + THING_BODY_SIZE

// Allocate memory for things.
Thing *things = malloc(
 num_things * 16 + 40);

#define THING_HEADER_SIZE 16
#define THING_BODY_SIZE 40
#define THING_SIZE \
 THING_HEADER_SIZE + THING_BODY_SIZE

Oops!

AST macros
(a la Lisp)

Macros operate on the
parsed program, and so are

aware of its structure

(define-macro (THING_SIZE) `(+ 40 6))

(* 5 (THING_SIZE))

(define-macro (THING_SIZE) `(+ 40 6))

(* 5 (THING_SIZE))

A function call, but
made at compile time

(define-macro (THING_SIZE) `(+ 40 6))

(* 5 (+ 40 6))

Correct!

Lisp is conceptually
beautiful

It's a language for processing lists

Programs themselves are lists

So what about Raku?

A much greater
diversity of syntax

Requires a more
complex model

But still...

A Raku macro is a function called at
compile time

The arguments that are passed

represent the code, not its result

They return value is also a
representation of a piece of program

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while-defined @a.shift, -> $val {
 say $val;
}

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while-defined @a.shift, -> $val {
 say $val;
}

Macro is called by the
compiler after parsing

its arguments

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while-defined @a.shift, -> $val {
 say $val;
}

Arguments are ASTs -
objects modeling the

program

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while-defined @a.shift, -> $val {
 say $val;
}

Quasi-quote construct
lets us make ASTs by

writing code and
interpolating other ASTs

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while-defined @a.shift, -> $val {
 say $val;
}

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while-defined @a.shift, -> $val {
 say $val;
}

quasi {
 while (my $temp = @a.shift).defined {
 (-> $val { say $val })($temp);
 }
}

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while (my $temp = @a.shift).defined {
 (-> $val { say $val })($temp);
}

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while (my $temp = @a.shift).defined {
 (-> $val { say $val })($temp);
}

Except this $temp is really a
generated name, and would not

clobber a $temp in the macro caller

"It'll be cool to have
AST macros!"
But wait, there's more...

class Signup does Cro::WebApp::Form {
 has Str $.username
 is validated(/^<[A..Za..z0..9]>+$/,
 'Only alphanumerics are allowed');
 has Str $.password is required is password;
 has Str $.verify-password is required;

 ...
}

class Signup does Cro::WebApp::Form {
 has Str $.username
 is validated(/^<[A..Za..z0..9]>+$/,
 'Only alphanumerics are allowed');
 has Str $.password is required is password;
 has Str $.verify-password is required;

 ...
} Trait handlers run at compile time...

class Signup does Cro::WebApp::Form {
 has Str $.username
 is validated(/^<[A..Za..z0..9]>+$/,
 'Only alphanumerics are allowed');
 has Str $.password is required is password;
 has Str $.verify-password is required;

 ...
}

...so if they can get the AST, then it's
possible to compile the Raku regex

into something for the HTML5
pattern attribute!

ECMA262Regex
Compiles JavaScript regex syntax into Raku

regexes (used by JSON::Schema)

File::Ignore
Compiles .gitignore style patterns into Raku

regexes

JSON::Mask, JSON::Path
Have interpreters written in Raku - but could be

more efficient if we compiled them into Raku

Today, modules that want
to compile into Raku look

something like this...

method control-letter($/) {
 my $name = %control-char-to-unicode-name{~$/};
 unless $name.defined {
 die 'Unknown control character escape is present: '
 ~ $/.Str;
 }
 make '"\c[' ~ $name ~ ']"';
}

method character-class($/) {
 my $start = '<';
 $start ~= '-' if $/.Str.starts-with('[^');
 $start ~= '[' ~ $<class-ranges>.made;
 make $start ~ ']>';
}

method control-letter($/) {
 my $name = %control-char-to-unicode-name{~$/};
 unless $name.defined {
 die 'Unknown control character escape is present: '
 ~ $/.Str;
 }
 make '"\c[' ~ $name ~ ']"';
}

method character-class($/) {
 my $start = '<';
 $start ~= '-' if $/.Str.starts-with('[^');
 $start ~= '[' ~ $<class-ranges>.made;
 make $start ~ ']>';
}

Ewwwwwwwwww!
Strings?!

method control-letter($/) {
 my $name = %control-char-to-unicode-name{~$/};
 unless $name.defined {
 die 'Unknown control character escape is present: '
 ~ $/.Str;
 }
 make '"\c[' ~ $name ~ ']"';
}

method character-class($/) {
 my $start = '<';
 $start ~= '-' if $/.Str.starts-with('[^');
 $start ~= '[' ~ $<class-ranges>.made;
 make $start ~ ']>';
}

Ewwwwwwwwww!
Strings?!

How do we know it's
well-formed?

method control-letter($/) {
 my $name = %control-char-to-unicode-name{~$/};
 unless $name.defined {
 die 'Unknown control character escape is present: '
 ~ $/.Str;
 }
 make '"\c[' ~ $name ~ ']"';
}

method character-class($/) {
 my $start = '<';
 $start ~= '-' if $/.Str.starts-with('[^');
 $start ~= '[' ~ $<class-ranges>.made;
 make $start ~ ']>';
}

Ewwwwwwwwww!
Strings?!

Could there be an
injection attack?

How do we know it's
well-formed?

method control-letter($/) {
 my $name = %control-char-to-unicode-name{~$/};
 unless $name.defined {
 die 'Unknown control character escape is present: '
 ~ $/.Str;
 }
 make '"\c[' ~ $name ~ ']"';
}

method character-class($/) {
 my $start = '<';
 $start ~= '-' if $/.Str.starts-with('[^');
 $start ~= '[' ~ $<class-ranges>.made;
 make $start ~ ']>';
}

Ewwwwwwwwww!
Strings?!

Could there be an
injection attack?

How do we know it's
well-formed? Raku compiler has

to spend time
parsing too!

Instead, they could
produce a Raku AST

Either by building up an object graph, or
by using quasi quoting

"It'll be cool to have
various ways of accessing a
Raku AST at compile time,

as well as using it as a
compilation target!"
But wait, there's still more...

What if we want to build...

A Raku linter?

A fancier Raku type checker?

Domain-specific compile-time
checks?

Often, these tools must be
built with their own parser

and program model

Those can get out of sync with new
language features, or end up having

their own bugs

Instead, they could
consume a standard

Raku AST
By serving as an extra compiler phase

"It'll be cool to be able to
produce and consume

Raku code in all kinds of
scenarios using a

standardized Raku AST!"
Surely there isn't more?

What if Rakudo's 10 year
old frontend compiler
architecture could be

improved?
Because surely we've all learned a thing or ten

in that time...

A standard Raku AST isn't
just something we're going

to add to the Rakudo
compiler.

RakuAST will be found at
the very heart of Rakudo.

"It'll be cool!"
But how will we get there?

The design
of RakuAST, and a compiler

based around it

Parser
Actions

World

Raku Source

QAST
Tree

The Rakudo compiler
frontend today

Parser
Actions

World

Raku Source

QAST
Tree

The Rakudo compiler
frontend today

Relatively low-level
AST, good for VM

abstraction

Parser
Actions

World

Raku Source

QAST
Tree

The Rakudo compiler
frontend today

Behavior

Declarations

Parser
Actions

World

Raku Source

QAST
Tree

Large components that
know the whole language

11,200 LoC

5,600 LoC

5,800 LoC

3,200 LoC
optimizer too!

Parser
Actions

World

Raku Source

QAST
Tree

Error reporting spread
throughout them

Parser
Actions

World

Raku Source

QAST
Tree

Error reporting spread
throughout them

Some stuff reported
from here isn't just

about syntax...

RakuAST node
=

The expert on a
language construct

(Excluding its syntax)

A RakuAST node knows about a
language construct's...

Semantics (code-gen)

Declarations and meta-objects

Symbol usage (explicit, implicit)

CHECK time (semantic errors)

Sink context handling

Optimization

Parser Actions

Raku Source

Raku
AST

The Rakudo compiler
frontend with RakuAST

Far simpler; just
maps parse tree to

RakuAST

Code-gen, checks,
declarations, etc.

handled in AST nodes

Only
reports
syntax
errors

What about the
ECMA262Regex module?

Parser Actions

Regex source

Raku
AST

What about the
ECMA262Regex module?

Parser Actions

Regex source

Raku
AST

What about the
ECMA262Regex module?

Builds RakuAST
nodes describing a

regex

We then compile from
the RakuAST - no Raku

source is generated!

Raku
grammar

for JS
regexes

RakuAST nodes
model language

constructs

For example, there's a node for a
parenthesized expression, even if these

are usually free of semantics

RakuAST nodes
should work just

like any other
Raku object

Must fit within the type system
So we can multi-dispatch over them, destructure

them using signatures, and so forth

Must be introspectable
So we can explore them in the REPL, have

auto-complete on them in the IDE, etc.

Must be easy to construct
Just create them with .new. No context objects

or compiler state required.

Use types to encode
valid syntactic

structure

(Also, macros will be able to use
RakuAST types on parameters - which

can map back into syntax errors.)

Use roles to extract
common features and/or
interfaces of AST nodes

RakuAST::Statement

RakuAST::Term
RakuAST::LexicalScope

RakuAST::Lookup
RakuAST::Sinkable

The progress
on implementing RakuAST so far

I'm currently working on
making RakuAST a reality

Supported by a grant from
The Perl Foundation

♥

A slight problem:

We want RakuAST nodes to
work as if they are

implemented in Raku

But we need RakuAST in order
to compile Raku code!

Raku standard library

Bootstrap

Metamodel

CORE.setting

Raku standard library

Bootstrap

Metamodel

CORE.setting

Metaclasses
implemented in

NQP

Raku standard library

Bootstrap

Metamodel

CORE.setting

NQP code using
MOP to piece
together basic

Raku types

Raku standard library

Bootstrap

Metamodel

CORE.setting
Loads of built-ins,
implemented in

Raku

Raku standard library

Bootstrap

Metamodel

CORE.setting

The bootstrap already exists to put together just
enough that we can write the rest in Raku...

...so it makes sense to have the RakuAST nodes
pieced together there too.

RakuAST

But it's really, really tedious to
manually instantiate all of the
meta-objects and piece them

all together!

But it's really, really tedious to
manually instantiate all of the
meta-objects and piece them

all together!

Thankfully, I'm a compiler
writer, so I just wrote a little

compiler to do that for me!

Current status

 Over 100 node types (some abstract)
 implemented

 Around 200 tests covering construction
 and EVAL from RakuAST nodes

 New RakuAST-based compiler frontend,
 enabled by an environment variable,
 passes half the sanity tests

Following progress or
trying it out

Find the source
In the rakuast branch of the Rakudo repository

Try it out
Using RAKUDO_RAKUAST=1 in the environment

Follow grant reports
On The Perl Foundation blog

The impact
of RakuAST on Raku users

Compatibility goal

The vast majority of Raku users
won't notice any changes in their

program's behavior when they
upgrade Rakudo to a version based

around RakuAST

How?

Passing the specification tests
Should not show any regressions

Checking its impact with Blin
Runs the tests of all ecosystem modules; only those

dabbling in compiler internals should be affected

Ensuring updates are available
For the few widely used modules that depend on

compiler internals

Naively, an "extra layer"
could be expected to lead

to a slowdown

However, I'm cautiously
optimistic we can come

out ahead

Why might it be faster?

More straightforward compilation
Thanks to a better program representation

Potential for better optimization
The static optimizer today has become challenging to

extend; RakuAST should offer a cleaner approach

Potential for parallelism
Some AST processing may be able to happen while we

parse the rest of the compilation unit

What next?

RakuAST nodes for all the language
Early autumn 2020

RakuAST-based compiler as default
Late autumn 2020

Macros
Christmas (2020)

Language release including RakuAST
Spring 2021

Thank you!
Questions?

@ jonathan@edument.cz

W jnthn.net

jnthnwrthngtn

jnthn

