
Realizing Raku Macros

Jonathan Worthington | Edument

Taking stock
of where Rakudo is today and what macros mean

Why it's time
for us to overhaul the Rakudo compiler frontend

The design of RakuAST
a user-facing AST for the Raku language

What happens next
and where this might take us

Taking stock
of where Rakudo is today
and what macros mean

Raku Source

Parser
Actions

World

Raku Source

Parser
Actions

World

Raku Source
Behavior

Declarations

Parser
Actions

World

Raku Source

QAST
Tree

Parser
Actions

World

Raku Source

QAST
Tree

Because it came after
PAST (Parrot AST), and Q
is the next letter after P.

Parser
Actions

World

Raku Source

QAST
Tree

Bytecode compiler
MoarVM
Bytecode

(Or JVM
bytecode or
JavaScript)

Parser
Actions

World

Raku Source

QAST
Tree

Bytecode compiler
MoarVM
Bytecode

(Or JVM
bytecode or
JavaScript)

Frontend

Backend

Architecturally, the
frontend hasn't changed

much in a decade

The last major overhaul was
done by this chap...

(The one on the left, I think...)

It's carried us all the way from

"Is it vaporware?"

to

"It's running in production!"

But now, we're running
into the limits of QAST...

QAST: the good

Relatively small and simple compared to the
size of the Raku language

Even so, it's been a decent semantic fit for

compiling Raku programs into

Has proven abstract enough for us to target a
range of different backends

QAST: the good

Relatively small and simple compared to the
size of the Raku language

Even so, it's been a decent semantic fit for

compiling Raku programs into

Has proven abstract enough for us to target a
range of different backends

But is this strength
also a weakness?

QAST: the limitations

Primarily designed as a compiler-internal
representation not part of the spec

Doesn't fit within the Raku type system

Even internally, it's often a little too

abstracted we end up having to go back
and figure out what stuff was

So what does this have
to do with macros?

Macros receive an AST

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while-defined @a.shift, -> $val {
 say $val;
}

Macros receive an AST

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while-defined @a.shift, -> $val {
 say $val;
}

Macro is called by the
compiler after parsing

its arguments

Macros receive an AST

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while-defined @a.shift, -> $val {
 say $val;
}

quasi lets us write
code with "holes"...

Macros receive an AST

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while-defined @a.shift, -> $val {
 say $val;
}

which we fill with ASTs
using {{{ escape }}}

syntax

Macros receive an AST

macro while-defined($cond, $body) {
 quasi {
 while (my $temp = {{{ $cond }}}).defined {
 {{{ $body }}}($temp);
 }
 }
}

my @a = False, True, False;
while-defined @a.shift, -> $val {
 say $val;
}

Not well formed if it's
not a block we can call,
but how do we check?

The most powerful uses of
macros rely on being able to

talk about the AST.

But ours isn't suitable for
consumption by the Raku

language user!

I've heard it said that
"Rakudo is too complex!"

Parser
Actions

World

Raku Source
11,200 lines

5,600 lines

But really, I think it's

too complicated

complex /ˈkɒmplɛks/
adjective
consisting of many different
and connected parts

complex /ˈkɒmplɛks/
adjective
consisting of many different
and connected parts

An 11,000 line part is
on the big side...

complex /ˈkɒmplɛks/
adjective
consisting of many different
and connected parts

...maybe we need to
be more complex?

Complexity isn't inherently bad.

The challenge is how that
complexity is tackled.

Why it's time
for us to overhaul the Rakudo

compiler frontend

We want
macros!

We want
useful

macros!

But not only that...

Cro::WebApp::Form

class Signup does Cro::WebApp::Form {
 has Str $.username
 is validated(/^<[A..Za..z0..9]>+$/,
 'Only alphanumerics are allowed');
 has Str $.password is required is password;
 has Str $.verify-password is required;

 ...
}

Cro::WebApp::Form

class Signup does Cro::WebApp::Form {
 has Str $.username
 is validated(/^<[A..Za..z0..9]>+$/,
 'Only alphanumerics are allowed');
 has Str $.password is required is password;
 has Str $.verify-password is required;

 ...
} Traits handlers are invoked

at compile time...

Cro::WebApp::Form

class Signup does Cro::WebApp::Form {
 has Str $.username
 is validated(/^<[A..Za..z0..9]>+$/,
 'Only alphanumerics are allowed');
 has Str $.password is required is password;
 has Str $.verify-password is required;

 ...
} ...we could take the AST of

the regex and compile it into
something for the HTML5

pattern attribute!

Cro::WebApp::Form

class Signup does Cro::WebApp::Form {
 has Str $.username
 is validated(/^<[A..Za..z0..9]>+$/,
 'Only alphanumerics are allowed');
 has Str $.password is required is password;
 has Str $.verify-password is required;

 ...
} ...we could take the AST of

the regex and compile it into
something for the HTML5

pattern attribute!

ECMA262Regex

Takes an ECMA262 (JavaScript)
regex and compiles it into the

Raku regex syntax

Used for implementing
JSON::Schema

ECMA262Regex

method control-letter($/) {
 my $name = %control-char-to-unicode-name{~$/};
 unless $name.defined {
 die 'Unknown control character escape is present: '
 ~ $/.Str;
 }
 make '"\c[' ~ $name ~ ']"';
}

method character-class($/) {
 my $start = '<';
 $start ~= '-' if $/.Str.starts-with('[^');
 $start ~= '[' ~ $<class-ranges>.made;
 make $start ~ ']>';
}

ECMA262Regex

method control-letter($/) {
 my $name = %control-char-to-unicode-name{~$/};
 unless $name.defined {
 die 'Unknown control character escape is present: '
 ~ $/.Str;
 }
 make '"\c[' ~ $name ~ ']"';
}

method character-class($/) {
 my $start = '<';
 $start ~= '-' if $/.Str.starts-with('[^');
 $start ~= '[' ~ $<class-ranges>.made;
 make $start ~ ']>';
}

Ewwwwwwwwww!
Strings?!

ECMA262Regex

method control-letter($/) {
 my $name = %control-char-to-unicode-name{~$/};
 unless $name.defined {
 die 'Unknown control character escape is present: '
 ~ $/.Str;
 }
 make '"\c[' ~ $name ~ ']"';
}

method character-class($/) {
 my $start = '<';
 $start ~= '-' if $/.Str.starts-with('[^');
 $start ~= '[' ~ $<class-ranges>.made;
 make $start ~ ']>';
}

Ewwwwwwwwww!
Strings?!

How do we know it's
well-formed?

ECMA262Regex

method control-letter($/) {
 my $name = %control-char-to-unicode-name{~$/};
 unless $name.defined {
 die 'Unknown control character escape is present: '
 ~ $/.Str;
 }
 make '"\c[' ~ $name ~ ']"';
}

method character-class($/) {
 my $start = '<';
 $start ~= '-' if $/.Str.starts-with('[^');
 $start ~= '[' ~ $<class-ranges>.made;
 make $start ~ ']>';
}

Ewwwwwwwwww!
Strings?!

Could there be an
injection attack?

How do we know it's
well-formed?

ECMA262Regex

method control-letter($/) {
 my $name = %control-char-to-unicode-name{~$/};
 unless $name.defined {
 die 'Unknown control character escape is present: '
 ~ $/.Str;
 }
 make '"\c[' ~ $name ~ ']"';
}

method character-class($/) {
 my $start = '<';
 $start ~= '-' if $/.Str.starts-with('[^');
 $start ~= '[' ~ $<class-ranges>.made;
 make $start ~ ']>';
}

Ewwwwwwwwww!
Strings?!

Could there be an
injection attack?

How do we know it's
well-formed? Raku compiler has

to spend time
parsing too!

ECMA262Regex

Wouldn't it be nice if we could
instead produce a tree

representing the Raku regex?

Well formed by construction!
No data/syntax confusion!

No time wasted parsing again!

File::Ignore

Compiles Git-style ignore file
patterns into Raku regexes

Same story as ECMA262Regex

JSON::Mask

my $mask = compile-mask('a,b,c');
mask($mask, %data1);
mask($mask, %data2);
mask($mask, %data3);

JSON::Mask

my $mask = compile-mask('a,b,c');
mask($mask, %data1);
mask($mask, %data2);
mask($mask, %data3);

What if my mask has
bad syntax?

JSON::Mask

my $mask = compile-mask('a,b,c');
mask($mask, %data1);
mask($mask, %data2);
mask($mask, %data3);

What if my mask has
bad syntax? Have to parse it

every program run

JSON::Mask

Actually, BEGIN gives us a solution
for this today - but with a macro

we'd not need to write that!

my $mask = BEGIN compile-mask('a,b,c');
mask($mask, %data1);
mask($mask, %data2);
mask($mask, %data3);

JSON::Mask

(Also, JSON::Mask parses this once,
but walks a tree to evaluate the

mask. But with a nice Raku AST, we
could more easily compile it.)

my $mask = BEGIN compile-mask('a,b,c');
mask($mask, %data1);
mask($mask, %data2);
mask($mask, %data3);

Cro::HTTP::Router

Internal DSL a la dynamic variables

my $app = route {
 get -> 'shop', $category {
 template 'category.crotmp', {
 products => $db.summaries($category)
 };
 }

 get -> 'catalogue', $category, $product {
 template 'product.crotmp', {
 product => $db.product($product)
 };
 }
}

Cro::HTTP::Router

Internal DSL a la dynamic variables

my $app = route {
 get -> 'shop', $category {
 template 'category.crotmp', {
 products => $db.summaries($category)
 };
 }

 get -> 'catalogue', $category, $product {
 template 'product.crotmp', {
 product => $db.product($product)
 };
 }
}

Have to run the route block
and build the matcher every

startup

Cro::HTTP::Router

Internal DSL a la dynamic variables

my $app = route {
 get -> 'shop', $category {
 template 'category.crotmp', {
 products => $db.summaries($category)
 };
 }

 get -> 'catalogue', $category, $product {
 template 'product.crotmp', {
 product => $db.product($product)
 };
 }
}

Does this signature work
with the router? (Yes, but
nice to know at compile

time if it would not!

Cro::HTTP::Router

Internal DSL a la dynamic variables

my $app = route {
 get -> 'shop', $category {
 template 'category.crotmp', {
 products => $db.summaries($category)
 };
 }

 get -> 'catalogue', $category, $product {
 template 'product.crotmp', {
 product => $db.product($product)
 };
 }
}

Did I typo the template
name? Wish it'd tell me

when I compile, so I don't
find out in production!

Cro::HTTP::Router

Internal DSL a la dynamic variables

my $app = route {
 get -> 'shop', $category {
 template 'category.crotmp', {
 products => $db.summaries($category)
 };
 }

 get -> 'catalogue', $category, $product {
 template 'product.crotmp', {
 product => $db.product($product)
 };
 }
}

What about a compile-time
unused warning if the

template never uses the
data I give it?

Cro::HTTP::Router

And yes, the route table is compiled
into....you guessed, a Raku regex!

Which is then EVAL'd!

Bet you can't guess what I'd prefer? ;-)

So much of the goodness
we can get will only be
achieved if we have a

user-facing AST for Raku

And also...

We can make Rakudo
better on the inside

Better collect responsibilities

Less figuring out "what was that" -
especially in the optimizer

More accessible to language users

The design of RakuAST
a user-facing AST for the Raku

language

Use cases

Constructed by Rakudo as it parses
source code

Passed into macros, where it can be
traversed (and maybe manipulated)

Constructed by Raku programs instead of
producing code strings and calling EVAL

Use cases

Constructed by Rakudo as it parses
source code

Passed into macros, where it can be
traversed (and maybe manipulated)

Constructed by Raku programs instead of
producing code strings and calling EVAL

Must be made of Raku
objects that fit within the

Raku type system...

Use cases

Constructed by Rakudo as it parses
source code

Passed into macros, where it can be
traversed (and maybe manipulated)

Constructed by Raku programs instead of
producing code strings and calling EVAL

...but can't compile it using
Rakudo because Rakudo

needs it to function!

So what can we do?

Piece the AST nodes together using the
Meta-Object Protocol

Give them real Raku signature objects,

so they introspect like other objects

Bodies of the methods are in NQP (our
self-hosting Raku subset)

But...it's so tedious to
write out all the MOP

calls to do that!

So I wrote a compiler...

Subset of Raku classes, methods, and
signatures with NQP bodies in

NQP code that pieces things together

using the Raku MOP out

But what then?

My first idea

Start implementing RakuAST nodes

Gradually transition the action methods
to producing them instead

QAST compiler knows how to ask such a

node to turn itself into QAST

My first idea

Start implementing RakuAST nodes

Gradually transition the action methods
to producing them instead

QAST compiler knows how to ask such a

node to turn itself into QAST

I did...

RakuAST::IntLiteral
RakuAST::NumLiteral
RakuAST::RatLiteral

RakuAST::VersionLiteral

But what next?

Pick almost anything else

Look at what it depends on

You'll end up in a recursion that
sucks in most of the language

Infix operators? They use terms.

Subs (for example) are terms.

Subs have statements.

Statements have expressions.

Expressions have infix operators.

Variables?

Need a declaration model.

Declarations live in lexical scopes.

Thus blocks. Thus statements.
Thus expressions. Thus terms.

Thus variables.

Plan B

Implement EVAL of RakuASTs

Start with literals

Gradually build up from there

When most things work, adapt actions

Plan B

Implement EVAL of RakuASTs

Start with literals

Gradually build up from there

When most things work, adapt actions

Plan B

Implement EVAL of RakuASTs

Start with literals

Gradually build up from there

When most things work, adapt actions

Though I've only
go so far...

<live demo>

Some interesting design
issues so far...

Actions and World get
sucked in and chopped up

A class declaration implies both
meta-objects and runtime semantics

RakuAST must be involved in both:
we produce meta-objects once per

quasi instantiation

Actions
11,000+ LoC

World
5,500+ LoC

RakuAST::Method

RakuAST::Class

RakuAST::Signature

RakuAST::Parameter

RakuAST::StatementList

RakuAST::ExpressionStatement

RakuAST::Infix

RakuAST::VariableLookup

RakuAST::IntLiteral

Meta-objects have a
construction lifecycle

Producing the class meta-object
needs the attribute meta-objects

But attribute meta-objects should

refer to the class they're in

Need "stubs"/partial meta-objects

Lazier meta-objects too...

Now we make them very eagerly

Opening line of a class declaration
creates the meta-object

In a quasi this must be deferred until
interpolation time - but BEGIN time
out of a quasi needs them up to date

What happens next
and where this might take us

I think by the summer, we can be
most of the way to a RakuAST

design, and have Rakudo using it

My aim is that we include RakuAST
in the next Raku language release, in

around a year's time

In scope:

The AST itself

Macros using the AST

Quasi quotes and splicing

Traits accessing the AST

Synthetic AST construction

Out of scope:

Non-expression macro arguments
and quasi splicing

Non-operator syntax additions

Slangs

User-defined compiler passes

The things that are in scope
are sufficient for dealing with

all of the examples I gave

The things out of scope will be
considered in future Raku

language versions

And what might be in
store for Rakudo's

internal architecture?

(Disclaimer: this is all really speculative!)

A tree-walking evaluator for
RakuAST

Cheapen simple, short-running BEGIN

and EVAL by not doing the whole
compilation thing

Which can be taken further...

Always start off tree-walking, and only
compile what's hot?

More language-aware specializations at
AST level? Feels like use-as-r-value style

optimizations are easier at this level.

LessVM?

New interface to MoarVM

Same garbage collector, object model,
Unicode support, JIT, etc.

Targeted at interpreter cooperation

rather than being given an entire
compilation unit as bytecode

A closing
thought

Developer experience
matters.

With Raku macros, we give module
developers the power to build safer,

richer, development experiences.

Let's do it.

Thank you!

@ jonathan@edument.cz

W jnthn.net

jnthnwrthngtn

jnthn

