
Things you may not
know about Cro

Jonathan Worthington | Edument

Cro
Libraries for building distributed systems in Raku

Asynchronous pipeline concept at its core
Popular for web services and web applications

Me
Raku runtime and compiler architect and developer

Leader of Edument in Prague
Comma IDE product manager

Cro founder and architect
Consulting focus on developer tooling and Raku

Cro isn't just for HTTP
server-side stuff

It includes a HTTP

client too!

And what's more...

It uses the very same Request
and Response classes on the

client side as on the server side

It's offers an asynchronous API

A simple request

Use the module
use Cro::HTTP::Client;

Get the response object (available as soon as the headers
are received)
my $response = await Cro::HTTP::Client.get('https://raku.org');
say "{.name}: {.value}" for $response.headers;

Get the response body (once we have received it all)
my $body = await $response.body;
say "Body is $body.chars() chars long";

JSON parsed automatically

(We can write and plug in body parsers for other
kinds of response if desired)

Use the module
use Cro::HTTP::Client;

Make a request to an endpoint that produces JSON
my $response = await Cro::HTTP::Client.get:
 'https://api.github.com/users/MoarVM/repos';

Thanks to the content-type header, automatically deserialized
my @repos := await $response.body;

So we can do this:
say bag @repos.map(*<language>); # Bag(C(7) HTML(2))

Streaming body for handling
large downloads

Make a request for a (sort of) large file
use Cro::HTTP::Client;
my $response = await Cro::HTTP::Client.get:
 'http://jnthn.net/papers/2020-cic-rakuast.pdf';

Receive the body asynchronously
my $expected = $response.header('content-length');
react whenever $response.body-byte-stream -> Blob $chunk {
 # Report how much we have received
 state $so-far += $chunk.bytes;
 say "$so-far bytes ({Int(100 * $so-far / $expected)}%)";
}

Set defaults for all requests
at construction time

Set up a client with authorization info and a base URL.
my constant ACCESS_TOKEN = 'REDACTED';
my $client = Cro::HTTP::Client.new:
 base-uri => 'https://api.github.com',
 auth => { username => 'jnthn', password => ACCESS_TOKEN };

Make a request that uses the defaults.
my $response = await $client.post: '/gists',
 content-type => 'application/vnd.github.v3+json',
 body => {
 description => 'Hello world',
 files => {
 'hello.raku' => { content => 'say "Hello world";' }
 }
 };
say await($response.body)<html_url>;

And more...

Configurable redirect following
Pluggable body parsers/serializers

(JSON, form, and multipart included as standard)

Persistent connections
HTTP/2.0

Proxy support
Cookie jar

Cro does WebSockets,
both server-side and

client-side

Deal with WebSockets using a
Raku Supply-based API

Neatly integrated with the Cro
HTTP router on the server side

Example: PollShare

A WebSocket API where many clients can
connect and send URLs to be polled

If the content at the URL changes, we notify

the client

Only poll each URL once, even if many
clients are interested

<to the code>

Writing an OpenAPI 3
specification?

There's a Cro module to

ease implementing it!

Don't repeat the routes, just
mention operation IDs

Validation of incoming

requests (and optionally of
outgoing responses)

A route specification
/clone_dataset:
 post:
 summary: Clone a dataset
 operationId: cloneDataset
 requestBody:
 required: true
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/CloneDataset"
 responses:
 '204':
 description: Dataset cloned
 '409':
 description: Dataset clone failed
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Error"

A route specification
/clone_dataset:
 post:
 summary: Clone a dataset
 operationId: cloneDataset
 requestBody:
 required: true
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/CloneDataset"
 responses:
 '204':
 description: Dataset cloned
 '409':
 description: Dataset clone failed
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Error"

Type specification
CloneDataset:
 type: object
 required:
 - newUsername
 - oldDataset
 - newDataset
 properties:
 newUsername:
 description: Owner of the cloned dataset
 type: string
 oldDataset:
 description: Name of the source dataset
 type: string
 newDataset:
 description: Name of the cloned dataset
 type: string

Load the Cro OpenAPI module

(Which is built using OpenAPI::Model,
OpenAPI::Schema::Validate, which
are not tied to Cro and provide a generic

OpenAPI core implementation)

use Cro::HTTP::Router;
use Cro::OpenAPI::RoutesFromDefinition;

Write a sub...

(Which receives the path to the schema, along
with an object that carries the business logic;

as with Cro route blocks, we should keep
them about HTTP, and injecting the business

logic object aids testability)

sub api-routes(Str $schema-path, Agrammon::Web::Service $ws) {
 ...
}

...specify the schema...

(In this case by providing an IO::Path to the
OpenAPI schema file, which will be loaded;
alternatively, a string containing the schema

itself may be provided)

sub api-routes(Str $schema-path, Agrammon::Web::Service $ws) {
 openapi $schema-path.IO, {
 ...
 }
}

...name the operation...

(Meaning we leave knowledge about the URL
structure exclusively in the OpenAPI

specification, rather than repeating it here)

sub api-routes(Str $schema-path, Agrammon::Web::Service $ws) {
 openapi $schema-path.IO, {
 operation 'cloneDataset', -> {
 # ...
 }
 # ...
 }
}

...take the session/user...

(This isn't anything to do with OpenAPI , just
the usual Cro way of obtaining the current

session using an initial parameter)

sub api-routes(Str $schema-path, Agrammon::Web::Service $ws) {
 openapi $schema-path.IO, {
 operation 'cloneDataset', -> LoggedIn $user {
 # ...
 }
 # ...
 }
}

...destructure the request...

(Safe in the knowledge that it has been

validated according to the schema)

sub api-routes(Str $schema-path, Agrammon::Web::Service $ws) {
 openapi $schema-path.IO, {
 operation 'cloneDataset', -> LoggedIn $user {
 request-body -> (:newUsername($new-username),
 :oldDataset($old-dataset),
 :newDataset($new-dataset)) {
 # ...
 }
 }
 # ...
 }
}

...call the business logic...

sub api-routes(Str $schema-path, Agrammon::Web::Service $ws) {
 openapi $schema-path.IO, {
 operation 'cloneDataset', -> LoggedIn $user {
 request-body -> (:newUsername($new-username),
 :oldDataset($old-dataset),
 :newDataset($new-dataset)) {
 $ws.clone-dataset($user, $new-username, $old-dataset,
 $new-dataset);
 }
 }
 # ...
 }
}

...and map errors to HTTP

sub api-routes(Str $schema-path, Agrammon::Web::Service $ws) {
 openapi $schema-path.IO, {
 operation 'cloneDataset', -> LoggedIn $user {
 request-body -> (:newUsername($new-username),
 :oldDataset($old-dataset),
 :newDataset($new-dataset)) {
 $ws.clone-dataset($user, $new-username, $old-dataset,
 $new-dataset);
 CATCH {
 when X::Agrammon::DB::Dataset::AlreadyExists {
 conflict 'application/json', %(error => .message);
 }
 }
 }
 }
 # ...
 }
}

Use it in our top-level routes

(In simpler cases, we can pass the OpenAPI
routes directly to Cro::HTTP::Server)

sub routes(Agrammon::Web::Service $ws) is export {
 my $schema = 'share/agrammon.openapi';
 route {
 # The OpenAPI-based routes
 include api-routes($schema, $ws);
 # Static content routes (HTML, CSS, JS)
 include static-content($root);
 # Various non-API routes
 include application-routes($ws);
 }
}

Cro::HTTP::Test eases
testing our Cro route

implementations

(Or we can use it against any HTTP URL
that we want to write tests for)

The usual test stuff (for plan, subtest, etc.)
use Test;
The Cro HTTP testing module
use Cro::HTTP::Test;
For mocks/stubs of our business logic
use Test::Mock;

Gather our trusty testing
tools...

Create a fake user session, to
test routes needing auth

(Not needed if you have no such routes to test)

my $fake-auth = mocked(
 # The session type
 Agrammon::Web::SessionUser,
 # Fake some of its methods
 returning => { :id(42), :logged-in, }
);

Create a mock of the business
logic object

(We can fake return values, even computing them
based on the input values, or exception throws if we
want; by default, we get an object that accepts, but

ignores, the method calls, just logging them)

my $fake-service = mocked(Agrammon::Web::Service);

Create the Cro routes we'll test
against and fake the auth

(This is where having the routes sub take an
object implementing the business logic shows

its use in letting us test our routes!)

subtest 'Clone dataset' => {
 test-service routes($fake-service), :$fake-auth, {
 ...
 }
}

...specify the path we'd like to
test against...

(We don't have to do it this way if there's just
one request; test-given is useful for many
tests of one endpoint, common headers, etc.)

subtest 'Clone dataset' => {
 test-service routes($fake-service), :$fake-auth, {
 test-given '/clone_dataset', {
 ...
 }
 }
}

...perform a test request and
assert against the result...

subtest 'Clone dataset' => {
 test-service routes($fake-service), :$fake-auth, {
 test-given '/clone_dataset', {
 test post(json => { :newUsername('foo'),
 :oldDataset('DatasetC'),
 :newDataset('DatasetD') }),
 status => 204;
 }
 ...
 }
}

...and check we called the
correct business logic

subtest 'Clone dataset' => {
 test-service routes($fake-service), :$fake-auth, {
 test-given '/clone_dataset', {
 test post(json => { :newUsername('foo'),
 :oldDataset('DatasetC'),
 :newDataset('DatasetD') }),
 status => 204;
 }
 check-mock $fake-service,
 *.called('clone-dataset',
 with => \($fake-auth, 'foo', 'DatasetC', 'DatasetD'),
 times => 1);
 }
}

Writing Raku using the
Comma IDE?

It has some features

especially for working
with Cro

Thank you!

@ jonathan@edument.cz

W jnthn.net

jnthnwrthngtn

jnthn

