
Giving MoarVM a new

general dispatch mechanism
to speed up various slow Raku constructs

Jonathan Worthington
Edument

What is dispatch
and why does it matter?

How we approached dispatch thus far
and the shortcomings of past approaches

A new generalized approach
to implementing the many different kinds of dispatch

The current status
in terms of completion and performance

Future opportunities
for further improvements

What is dispatch
and why does it matter?

$store.get - product($id)

class Store {
 method get - product($id) {
 ...
 }
}

?

$x + $y

multi infix:<+>(Int $x, Int $y) {
 ...
}

?

Dispatch fills the
places in-between the

code we write

It's everywhere...

...but we'd like to see
it nowhere

(especially not high on profiler output)

More generally, dispatch is
any process where the

types or values
of arguments determine

what code we run

Just write to the Scalar $!value attribute
my $x = $v;
Depends on the type of $v (write or error)
my Int $y = $v;
Reset to the default value
$x = Nil;
May need to vivify the hash value
%h<x> = $v;

Assignment is dispatch

An incomplete list of things that
are essentially dispatch in Raku

Standard method calls ($o.m) callsame, nextwith, etc.

Maybe method calls ($o.?m) Anything that has been wrap'd

Qualified method calls ($o.T::m) Coercion

Private method calls ($o!pm) Return type assertion

Qualified private method calls ($o!T::Pm) Binding type assertion

Multiple dispatch Assignment

Invocation of an object (Code, CALL-ME) Sinking

And many of these combine
(for example, a wrapped multi method)

Standard method calls ($o.m) callsame, nextwith, etc.

Maybe method calls ($o.?m) Anything that has been wrap'd

Qualified method calls ($o.T::m) Coercion

Private method calls ($o!pm) Return type assertion

Qualified private method calls ($o!T::Pm) Binding type assertion

Multiple dispatch Assignment

Invocation of an object (Code, CALL-ME) Sinking

How we approached
dispatch thus far

and the shortcomings of past
approaches

In the beginning...

In the beginning...
DISPATCH(NEXT_OP) {
 OP(no_op):
 goto NEXT;
 OP(const_i64):
 GET_REG(cur_op , 0).i64 = MVM_BC_get_I64(cur_op , 2);
 cur_op += 10;
 goto NEXT;
 OP(add_i):
 GET_REG(cur_op , 0).i64 = GET_REG(cur_op , 2).i64 + GET_REG(cur_op , 4).i64;
 cur_op += 6;
 goto NEXT;
 OP(if_i):
 if (GET_REG(cur_op , 0).i64)
 cur_op = bytecode_start + GET_UI32(cur_op , 2);
 else
 cur_op += 6;
 GC_SYNC_POINT(tc);
 goto NEXT;
 ...

In the beginning...
DISPATCH(NEXT_OP) {
 OP(no_op):
 goto NEXT;
 OP(const_i64):
 GET_REG(cur_op , 0).i64 = MVM_BC_get_I64(cur_op , 2);
 cur_op += 10;
 goto NEXT;
 OP(add_i):
 GET_REG(cur_op , 0).i64 = GET_REG(cur_op , 2).i64 + GET_REG(cur_op , 4).i64;
 cur_op += 6;
 goto NEXT;
 OP(if_i):
 if (GET_REG(cur_op , 0).i64)
 cur_op = bytecode_start + GET_UI32(cur_op , 2);
 else
 cur_op += 6;
 GC_SYNC_POINT(tc);
 goto NEXT;
 ...

Simple bytecode
interpreter

Interpreting bytecode is
rather slow...

...but C is pretty darn fast...

...so write the performance

critical parts in C

Thus, complex ops...
 OP(findmeth): {
 /* Increment PC first, as we may make a method call. */
 MVMRegister *res = &GET_REG(cur_op , 0);
 MVMObject * obj = GET_REG(cur_op , 2).o;
 MVMString *name = MVM_cu_string (tc , cu, GET_UI32(cur_op , 4));
 cur_op += 8;
 MVM_6model_find_method(tc , obj , name, res, 1);
 goto NEXT;
}

Thus, complex ops...
 OP(findmeth): {
 /* Increment PC first, as we may make a method call. */
 MVMRegister *res = &GET_REG(cur_op , 0);
 MVMObject * obj = GET_REG(cur_op , 2).o;
 MVMString *name = MVM_cu_string (tc , cu, GET_UI32(cur_op , 4));
 cur_op += 8;
 MVM_6model_find_method(tc , obj , name, res, 1);
 goto NEXT;
}

Look up in a cache...

Thus, complex ops...
 OP(findmeth): {
 /* Increment PC first, as we may make a method call. */
 MVMRegister *res = &GET_REG(cur_op , 0);
 MVMObject * obj = GET_REG(cur_op , 2).o;
 MVMString *name = MVM_cu_string (tc , cu, GET_UI32(cur_op , 4));
 cur_op += 8;
 MVM_6model_find_method(tc , obj , name, res, 1);
 goto NEXT;
}

Look up in a cache...and if it's not
found, call the find_method
method on the meta-object to

find it...

Thus, complex ops...
 OP(findmeth): {
 /* Increment PC first, as we may make a method call. */
 MVMRegister *res = &GET_REG(cur_op , 0);
 MVMObject * obj = GET_REG(cur_op , 2).o;
 MVMString *name = MVM_cu_string (tc , cu, GET_UI32(cur_op , 4));
 cur_op += 8;
 MVM_6model_find_method(tc , obj , name, res, 1);
 goto NEXT;
}

Look up in a cache...and if it's not
found, call the find_method
method on the meta-object to

find it...

Wait, but then I need to find the
find_method method...it'd

better be in the cache...

Thus, complex ops...
 OP(findmeth): {
 /* Increment PC first, as we may make a method call. */
 MVMRegister *res = &GET_REG(cur_op , 0);
 MVMObject * obj = GET_REG(cur_op , 2).o;
 MVMString *name = MVM_cu_string (tc , cu, GET_UI32(cur_op , 4));
 cur_op += 8;
 MVM_6model_find_method(tc , obj , name, res, 1);
 goto NEXT;
}

Look up in a cache...and if it's not
found, call the find_method
method on the meta-object to

find it...

Wait, but then I need to find the
find_method method...it'd

better be in the cache... Oh, and the interpreter should
not be recursively entered, so

have to write the C code in
continuation passing style!

OP(if_o):
 GC_SYNC_POINT(tc);
 MVM_coerce_istrue (tc , GET_REG(cur_op , 0).o, NULL,
 bytecode_start + GET_UI32(cur_op , 2),
 cur_op + 6,
 0);
 goto NEXT;

Here's another one

The thing that underlies if
statements on objects today

OP(if_o):
 GC_SYNC_POINT(tc);
 MVM_coerce_istrue (tc , GET_REG(cur_op , 0).o, NULL,
 bytecode_start + GET_UI32(cur_op , 2),
 cur_op + 6,
 0);
 goto NEXT;

Here's another one

Try to avoid making a method call to
Bool when possible, because those

were expensive

void MVM_coerce_istrue (MVMThreadContext * tc , MVMObject * obj ,
 MVMRegister * res_reg , MVMuint8 * true_addr , MVMuint8 * false_addr ,
 MVMuint8 flip) {
 MVMint64 result = 0;
 if (! MVM_is_null (tc , obj)) {
 MVMBoolificationSpec * bs = obj - >st - >boolification_spec ;
 switch (bs == NULL ? MVM_BOOL_MODE_NOT_TYPE_OBJECT : bs- >mode) {
 case MVM_BOOL_MODE_UNBOX_INT:
 result = !IS_CONCRETE(obj) || REPR(obj) - >box_funcs.get_int (tc ,
 STABLE(obj), obj , OBJECT_BODY(obj)) == 0 ? 0 : 1;
 break;
 case MVM_BOOL_MODE_UNBOX_NUM:
 result = !IS_CONCRETE(obj) || REPR(obj) - >box_funcs.get_num (tc ,
 STABLE(obj), obj , OBJECT_BODY(obj)) == 0.0 ? 0 : 1;
 break ;
 ...

...and on the inside...

void MVM_coerce_istrue (MVMThreadContext * tc , MVMObject * obj ,
 MVMRegister * res_reg , MVMuint8 * true_addr , MVMuint8 * false_addr ,
 MVMuint8 flip) {
 MVMint64 result = 0;
 if (! MVM_is_null (tc , obj)) {
 MVMBoolificationSpec * bs = obj - >st - >boolification_spec ;
 switch (bs == NULL ? MVM_BOOL_MODE_NOT_TYPE_OBJECT : bs- >mode) {
 case MVM_BOOL_MODE_UNBOX_INT:
 result = !IS_CONCRETE(obj) || REPR(obj) - >box_funcs.get_int (tc ,
 STABLE(obj), obj , OBJECT_BODY(obj)) == 0 ? 0 : 1;
 break;
 case MVM_BOOL_MODE_UNBOX_NUM:
 result = !IS_CONCRETE(obj) || REPR(obj) - >box_funcs.get_num (tc ,
 STABLE(obj), obj , OBJECT_BODY(obj)) == 0.0 ? 0 : 1;
 break ;
 ...

...and on the inside...

Another switch statement to decide
what to do...but it's C so it's fast? J

With time, the runtime
started to learn the tricks

of the trade...

Type specialization
Record what types actually show up, produce optimized

bytecode for those

Deoptimization
If the types are wrong, fall back to the original code

Inlining
Copy small routines into the caller, saving call costs

JIT compilation
Produce machine code, avoiding interpreter overhead

At first... But now...

We only had a bytecode
interpreter

We can JIT-compile hot
bytecode into machine code

Lots of little method calls were
prohibitively expensive

We can inline small method
calls, so the calling cost is gone

Doing the hot-path decision
making in C was a clear win

The C code is an opaque blob
that we can't type specialize

And having these
changes everything....

Another issue: only the
most common kinds of

dispatch got special
treatment in the VM

