
Some (mostly) new Raku modules for

database setup,
migrations, usage,
and testing
Jonathan Worthington
Edument

Core dev and user

Mostly known for contributions to
MoarVM and Rakudo

Also a Raku language user, for various

web applications (commercial) and
compiler hackery (fun)

Core dev and user

Mostly known for contributions to
MoarVM and Rakudo

Also a Raku language user, for various

web applications (commercial) and
compiler hackery (fun)

Also to blame for
founding Cro

DB frustrations

Pretty much every web application I
make involves a database

Wasn't entirely happy with the

development experience around it

Made a few modules

Make it easy to get developing
by scripting development service setup

Automate database changes
and have checks to catch silly problems early

Give to SQL what is SQLs
that is, write (at least) the non-trivial queries in SQL

If it ain't tested, it's probably broke
applies to database code too, so test it!

Make it easier to debug DB issues
with easy access to multiple development DBs

Make it easy to set
up a development

environment?

Make it easy to set
up a development

environment?
Dev::ContainerizedService

Annoying:

"Hmm, it uses Postgres."

"Sure hope my system version is compatible
enough."

"Let's look up how to add a database, I only do this

this every few months..."

"...and maybe hack up a script to feed in the
database connection string via environment vars."

"Ah bother, now I'm using my other computer, let's

do all of this again..."

Mostly tolerable:

"Oh yay, a Docker compose file! Less setup!"

"Oh bother, my docker-compose version is too old
to support this compose file..."

"Phew, finally it's up."

"Hmm...but how do I connect to the database to

poke around inside it?"

But what if...

For my small single-service Raku projects...

...there was a module that let me declare
what services I need...

...and it would run the containers...

...and then run my application with the right

stuff in the environment?

1

In META6.json's depends, add
Dev::ContainerizedService

2

Create a Raku script, maybe call it
devenv.raku

3

Ensure that database connection details are
obtained through the environment

my $db = DB::Pg.new:
 conninfo => %*ENV<DB_CONNINFO>;

4

Put this into devenv.raku:

#!/usr/bin/env raku
use Dev::ContainerizedService;

service 'postgres', :tag<13.0>, -> (:$conninfo, *%) {
 env 'DB_CONNINFO', $conninfo;
}

<demo>

Automate database
changes and catch

silly mistakes?

Automate database
changes and catch

silly mistakes?
DB::Migration::Declare

Annoying:

"I'll just keep a schema.sql and tweak it when
things change..."

"...ah, and I guess write the alteration DDL to apply

to the real database..."

"...but it won't change that often, it's a simple
project, I'll cope, right?

<a little later>

"I HATE THIS TEDIUM!"

Migrations to the rescue!

Append-only list of changes

Together they bring the database to the current state

Written in SQL directly or generated

Keep a record in the database of which changes have
been applied

Apply changes at application startup or explicitly
(startup OK for "small" systems, explicitly better if the application is

horizontally scaled out or if there's enough data to seriously delay startup)

Migrations in Raku?

DB::Migration::Simple
Works with DBIish, explicitly write out the SQL for

both up and down directions

Red
Migrations support planned, but seem to be work in
progress feature; once they are supported, probably

this will be ideal for Red users

DB::Migration::Declare
My effort: a Raku DSL for expressing migrations.

Fair warning: it's new, it's BETA, Postgres only so far!

Specify migrations in Raku code

use DB::Migration::Declare;

migration 'Setup', {
 create-table 'skyscrapers', {
 add-column 'id', integer(), :increments, :primary;
 add-column 'name', text(), :!null, :unique;
 add-column 'height', integer(), :!null;
 }
}

Add further migrations as needed

use DB::Migration::Declare;

migration 'Setup', {
 create-table 'skyscrapers', {
 add-column 'id', integer(), :increments, :primary;
 add-column 'name', text(), :!null, :unique;
 add-column 'height', integer(), :!null;
 }
}

migration 'Add countries', {
 create-table 'countries', {
 add-column 'id', integer(), :increments, :primary;
 add-column 'name', varchar(255), :!null, :unique;
 }

 alter-table 'skycrapers',{
 add-column 'country', integer();
 foreign-key table => 'countries', from => 'country', to => 'id';
 }
}

Add further migrations as needed

use DB::Migration::Declare;

migration 'Setup', {
 create-table 'skyscrapers', {
 add-column 'id', integer(), :increments, :primary;
 add-column 'name', text(), :!null, :unique;
 add-column 'height', integer(), :!null;
 }
}

migration 'Add countries', {
 create-table 'countries', {
 add-column 'id', integer(), :increments, :primary;
 add-column 'name', varchar(255), :!null, :unique;
 }

 alter-table 'skycrapers',{
 add-column 'country', integer();
 foreign-key table => 'countries', from => 'country', to => 'id';
 }
}

Oh, crap!

Add further migrations as needed

use DB::Migration::Declare;

migration 'Setup', {
 create-table 'skyscrapers', {
 add-column 'id', integer(), :increments, :primary;
 add-column 'name', text(), :!null, :unique;
 add-column 'height', integer(), :!null;
 }
}

migration 'Add countries', {
 create-table 'countries', {
 add-column 'id', integer(), :increments, :primary;
 add-column 'name', varchar(255), :!null, :unique;
 }

 alter-table 'skycrapers',{
 add-column 'country', integer();
 foreign-key table => 'countries', from => 'country', to => 'id';
 }
}

Detected before the
migrations are

applied!

<demo>

Planned features

Automatically calculate down migrations
(for now, it only does up ones)

Support a wider range of database features (views,

SPs) and alterations

A CLI (and perhaps Comma integration) for checking
what is applied and performing application

Configurable data retention on lossy changes

(copy data in column being dropped to a backup table)

Just Do It With SQL,
without inline SQL
among the Raku?

Just Do It With SQL,
without inline SQL
among the Raku?

Badger

Mixed feelings

Used various ORMs
(both well-supported ones and client's homegrown ones)

Also various SQL generators

Generally OK at making easy things easier

Less good at hard things possible
(often end up reaching for the escape hatches)

Few projects need database abstraction

Just write SQL!

Just write SQL!

But inline SQL in code is

UGLY!!!

Then a former $dayjob colleague
pointed out a compelling alternative!

The Clojure HugSQL library lets one write a SQL file,

with comments that result in function definitions

Those can then be called as normal functions

Then a former $dayjob colleague
pointed out a compelling alternative!

The Clojure HugSQL library lets one write a SQL file,

with comments that result in function definitions

Those can then be called as normal functions

Please could you do a
Raku port?

-- sub add-skyscraper(Str $name, Int $height, Int $country-id)
insert into skyscrapers (name, height, country)
values ($name, $height, $country-id);

It's just a SQL file...

-- sub add-skyscraper(Str $name, Int $height, Int $country-id)
insert into skyscrapers (name, height, country)
values ($name, $height, $country-id);

It's just a SQL file...

With comments
containing Raku
sub declarations

use Badger <sql/queries.sql>;

my $db = DB::Pg.new(conninfo => %*ENV<DB_CONNINFO>;
add-skyscraper($db, 'The Shard', 310, 42);

That is then used...

<demo>

Tests that hit the
database without

setup hassle?

Tests that hit the
database without

setup hassle?
Test::ContainerizedService

It can make sense to mock the
database in tests

But database queries can be complex

beasts, with plenty to wrong

Desirable to cover those with tests

But the setup work can be annoying!

use DB::Pg;
use Test;
use Test::ContainerizedService;

test-service 'postgres', :tag<13.0>, -> (:$conninfo, *%) {
 my $conn = DB::Pg.new(:$conninfo);

 # Now you have a fresh database and a connection to it
}

Test::ContainerizedService
to the rescue!

use DB::Pg;
use Test;
use Test::ContainerizedService;

test-service 'postgres', :tag<13.0>, -> (:$conninfo, *%) {
 my $conn = DB::Pg.new(:$conninfo);

 # Now you have a fresh database and a connection to it
}

Test::ContainerizedService
to the rescue!

Tests skipped if no
docker or other

setup issues!

<demo>

Make it easier to
investigate DB

issues?

Make it easier to
investigate DB

issues?
Dev::ContainerizedService

By default, we get a clean state every time
with Dev::ContainerizedService

But what if we want a development

database that sticks around?

#!/usr/bin/env raku
use Dev::ContainerizedService;

project 'my-cool-app';
store;

service 'postgres', :tag<13.0>, -> (:$conninfo, *%) {
 env 'DB_CONNINFO', $conninfo;
}

Specify a project name, and that we
should store service state

<demo>

PRs welcome!

So far, all are focused on Postgres
(because that's what I'm using)

However, all are extensible

(if you're using something else)

Questions?

Not right now!

I recorded this for Raku Conference in
advance and am now on vacation

But contact info is coming up!

Thank you

@ jonathan@edument.cz

W jnthn.net

jnthnwrthngtn

jnthn

