\
|
|
\
|

Cro Roﬁter

So what is Cro anyway?

S

HTTP client /

HTTP server, router, etc.

—

Cro::HTTP

Cro::TLS

Cro::Core

HTTP client /

Good for HTTP

services, BFF, etc.

HTTP server, router, etc.

Cro::HTTP

Cro:

:TLS

Cro::Core

|||1

WebSocket cIiey WebSocket router plugin

—

Cro::WebSocket

Cro::HTTP

Cro::TLS

Cro::Core

Qweb framework
Cro::WebApp

Cro::WebSocket

Cro::HTTP

Cro::TLS

Qweb framework .‘. »
Cro::WebApp

Cro::WebSocket

Cro::HTTP

Cro::TLS

Today we'll "just” be considering...

Cro::WebApp

Cro::WebSocket

Cro::HTTP

What is the router?

Maps incoming HTTP requests
to logic that handles them

Not where business / domain logic lives!
Only the mapping of that into HTTP.

Lots of things "plug in" to the
Cro HTTP router

WebSocket support
Templates and form handling
OpenAPI

Setup

Either write code like this...

use Cro::HTTP::Router;
use Cro::HTTP::Server;

my $application = route {
get -> {
content 'text/plain', "Hello world!\n";
}
}

my Cro::Service $http = Cro::HTTP::Server.new:
:port(20000), :$application;
$http.start;
react whenever signal(SIGINT) {
$http.stop;
exit;

...or use the cro CLlI...

$ cro stub http example example/

A name for the service Where to put it
Answer its questions
Get a stub service created

Routes arein 11b/Routes.pm6

...or use Comma IDE

New Project

- Raku Project 5DK: | » Rakuw2019.07.68.9.085.ed.2.f
g Ermpty Project

rProject type
Raku script
Raku module

Raku application
Cro web application

Description

Creates astub Croweb application

Route segment matching

Routing uses Raku signatures

route {
No parameters: GET /
get -> {

content 'text/plain', 'Welcomel';

}

One literal parameter: GET /about
get -> 'about' {

content 'text/plain', 'About Us';
}

Two literal parameters: GET /services/development
get -> 'services', ‘'development' {
content 'text/plain', 'We write code!’;

}

Parameters receive segment values

route {
Matches anything in second segment:
GET /product/42
get -> 'product', $id {
content 'text/plain', "About product ID: $id";
}

However, literal segments win:
GET /product/search
get -> 'product', 'search' {
content 'text/plain', 'Search products’;

¥

Types

route {

Force it to be, and parse it as, an Int

get

}

-> 'product', Int $id {
content 'text/plain', "About product ID: $id";

Or an unsigned Int:

get

}

-> 'product’', UInt $id {
content 'text/plain', "About product ID: $id";

Or limit it to 32 bits:

get

}

-> 'product’', uint32 $id {
content 'text/plain', "About product ID: $id";

Constraints

route {
Declare a subset type matching UUIDs
my subset UUIDv4 of Str where /#
<[0..9a..f]> ** 12
4 <[0..9a..f]> ** 3
<[89ab]> <[@..9a..f]> ** 15
$/;

Segment must contain a UUIDv4:
GET /product/afb47801aa9c454db7037cd3502ada4c
get -> 'product', UUIDv4 $id {

content 'text/plain', "About product ID: $id";
}

Optional and slurpy

route {

Get all the menu or just one section
GET /menu
GET /menu/appetizers
get -> '"menu', $section? {
content 'text/plain’', $section
?? "Just the $section”
Il "All the food!";

}

Get a page in the documentation
GET /docs
GET /docs/cro/http/router
get -> 'docs', *@path {
content 'text/plain’,
"You want the doc at @path

Join(*/")";

Serving static content

Single files

route {
Respond to requests for the favicon with a
particular file (media type “image/x-icon’
chosen automatically from extension)
GET /favicon.ico
get -> 'favicon.ico' {
static 'static-content/favicon.ico’

}

Everything below a subdirectory

route {
Any file within a directory
GET /js/app.js
get -> 'js', $file {
static 'compiled-frontend/', $file
}

Or any path below a directory (includes
protection against traversal attacks)
GET /images/food/jalfrezi.jpg
get -> 'images', *@path {
static 'static-content/images', @path

¥

Further static serving options

route {
Specify index files for directories
GET /pages (serves pages/index.html)

GET /pages/foo/ (serves pages/foo/index.html)
get -> 'pages', *@path {
static 'pages', @path, indexes => <index.html>;

}

Customize the mime type for "~ .foo files

get -> 'downloads', *@path {
static 'files', @path, mime-types => {
"foo' => 'application/vnd.acme.foo'

}

Producing responses

What is content really doing?

multi content(Str $content-type, $body,
:$enc = $body ~~ Str ?? 'utf-8"' !l Nil --> Nil) {
Defaulting the status code to 200
response.status //= 200;

Setting the content type and maybe charset
with $enc {
response.append-header('Content-type’,
"$content-type; charset=$ _");

}
else {

response.append-header('Content-type', $content-type);
}

Setting the response body
response.set-body($body);

Forming the response body

e Router action sets the response.body
(normally via. a function, such as content)

e Response serializer asks the response’s
BodySerializerSelector for a serializer

e The response body is serialized using the
chosen BodySerializer

Default set of body serializers

(Body is Array/Hash, JSON content-type)
(Body is a Blob or Buf)
(Body is a Str)

(Body is a Supply)

Producing a JSON response

route {

Just specify the content type, and the JSON body

serializer will be selected, and turn the data

structure into JSON.

get -> 'product', Int $id {

content 'application/json', {

:$id, :name('Kashmiri chili powder'),
:description('Beautifully red and spicy!'),
:tags<cooking indian chili>

(Also chosen for any media type with +json suffix)

Producing a streaming response

route {
Provide a Supply body. It must emit binary Blobs.
It will be tapped by the response serializer, and
the data sent using the chunked transfer encoding.
get -> '"ticks' {
content 'text/plain’', supply {
whenever Supply.interval(1l) {
emit "$ \n".encode('utf-8');
}

Writing a custom body serializer

use Cro::HTTP::BodySerializers;
use YAMLish;

class YAMLBodySerializer does Cro::HTTP::BodySerializer {
Should it serialize this response?
method is-applicable($response, $body --> Bool) {
$response.content-type.type-and-subtype eq 'text/yaml’

}

If so, how? Should return a Supply.

method serialize($response, $body --> Supply) {
my $yaml = save-yaml $body;
my $binary = $yaml.encode('utf-8");
self!set-content-length($response, $binary.bytes);
supply emit $binary

Using a custom body serializer

route {
Tell our route block to add it to the set of
possible serializers for all responses that it
produces
body-serializer YAMLBodySerializer;

Produce the content type that it's looking for
get -> 'product', Int $id {
content 'text/yaml', {
:$id, :name('Kashmiri chili powder'),
:description('Beautifully red and spicy!'),
:tags<cooking indian chili>

Redirects

route {
Temporary redirect while shop unavailable
get -> 'shop', *@ {
redirect '/news';

}

Permanent redirect to new blog location
get -> 'blog', Int $post-id {
redirect "https://blog.our.domain/$post-id",
:permanent;

Error responses

route {
Various helper functions exist for producing
common error responses
get -> 'advent', Int $day {
if $day <= Date.today.day {
content 'text/plain’',
"A post of the day for you';

}
else {
Content type and content are optional
not-found 'text/plain’,
"Naughty naughty! Not yet!’;
}

Error responses

There are also functions for...

bad-request
forbidden
conflict

For others, use set-status, optionally
followed by content

Templates

Cro: :WebApp: :Template

Part of the Cro: :WebApp distribution

(so if you're just building services, you don't need to ship it)

Conditionals, interpolation, subroutines,
modules, automatic escaping of data, etc.

Supported in Comma IDE

(syntax highlighting, auto-complete, navigation)

An example template

<h2>Latest News</h2>

<@stories>
<&story($)>

</@>

<:sub story(%$s)>
<h3><$%$s.headline></h3>
<p class="date">Posted <$s.posted> by <$s.author></p>
<?$s.exclusive>
<div class="exclusive">EXCLUSIVE!</div>
</?>
<p><$s.summary></p>
</:>

An example template

<h2>Latest News</h2>

<@stories>
<&story($)> @ sigil tag is an
</@> iteration

<:sub story($s)>
<h3><$s.headline></h3>
<p class="date">Posted <$s.posted> by <$s.author></p>
<?$s.exclusive>
<div class="exclusive">EXCLUSIVE!</div>
</?>
<p><$s.summary></p>
</

An example template

<h2>Latest News</h2>

<@stories>
<&story($_)> & sigil tag calls a
</@> subroutine

<:sub story($s)>
<h3><$s.headline></h3>
<p class="date">Posted <$s.posted> by <$s.author></p>
<?$s.exclusive>
<div class="exclusive">EXCLUSIVE!</div>
</?>
<p><$s.summary></p>
</

An example template

<h2>Latest News</h2>

<@stories>
<&story($_)> . sigil tag is used for
</@> making declarations

<:sub story($s)>
<h3><$s.headline></h3>
<p class="date">Posted <$s.posted> by <$s.author></p>
<?$s.exclusive>
<div class="exclusive">EXCLUSIVE!</div>
</?>
<p><$s.summary></p>
</

An example template

<h2>Latest News</h2>

<@stories>
<&story($)> S sigil tag is
</@> interpolation...

<:sub story($%
<h3><$sTheadline></h3>
<p class="date">Posted <$s.posted> by <$s.author></p>
<?$s.exclusive>
<div class="exclusive">EXCLUSIVE!</div>
</?>
<p><$s.summary></p>
</>

An example template

<h2>Latest News</h2>

<@stories>
<&story($_)> ...and we can index
</@> into the data too

<:sub story($s)>
<h3><$s.headline></h3>
<p class="date">Posted <$s.posted> by <$s.author></p>
<?$s.exclusive>
<div class="exclusive">EXCLUSIVE!</div>
</?>
<p><$s.summary></p>
</

An example template

<h2>Latest News</h2>

<@stories>
<&story($_)> ? sigil tag is "if"
</@> ! sigil tag is "unless"

<:sub story($s)>
<h3><$%$s.headline><
<p class="date"F&Sted <$s.posted> by <$s.author></p>
<?$s.exclusive

<div class="exclusive">EXCLUSIVE!</div>

</?>
<p><$s.summary></p>

</

Using the template

route {
Specify directory holding templates
template-location 'templates’;

Render a template as the response body
get -> "news' {
template 'summary.crotmp', { stories => [

{
:headline('Something happened'),
:author('Jonathan'),
:posted(Date.today.yyyy-mm-dd),
:exclusive,
:summary('It was amazing!'),

}s

.

11

A page layout macro

<:macro layout($title)>
<html lang="en">
<head>
<meta charset="UTF-8">
<title><$title></title>

</head>
<body> Use this to render the
<:body> inner content
</body>
</html>

</:>

Applying the layout

<:use 'layout.crotmp'>

<|layout('Latest news')>
<h2>Latest News</h2>

<@§;:’:<1>i35/2$. Use the template
</@> N declaring the layout
</ |>

<:sub story($s)>
<h3><$s.headline></h3>
<p class="date">Posted <$s.posted> by <$s.author></p>
<?$s.exclusive>
<div class="exclusive">EXCLUSIVE!</div>
</?>
<p><$s.summary></p>
</:>

Applying the layout

<:use 'layout.crotmp'>

<|layout('Latest news')>
<h2>Latest News</h2>

<@stories>
<&story($_)> Apply the layout
</@> macro to the content
</|>

<:sub story($s)>
<h3><$s.headline></h3>
<p class="date">Posted <$s.posted> by <$s.author></p>
<?$s.exclusive>
<div class="exclusive">EXCLUSIVE!</div>
</?>
<p><$s.summary></p>
</:>

Query strings, cookies,
and headers

Query string values

route {

Take query string parameters using named parameters.

Remember that these are optional by default!

GET /search?color=blue

GET /search?color=blue&max-price=100

get -> 'search', :$color, :$min-price, :$max-price {

content 'text/plain', qq:to/CONTENT/

Color: {$color // 'any'}
Price: {$min-price // © } to {$max-price // '*'}
CONTENT

(These can also be typed and constrained.)

Headers and cookies

route {
Use the "is header trait for getting headers

get -> 'browser', :$user-agent is header {

content 'text/plain', $user-agent
?? "You appear to be using $user-agent”
I'l "Your client is rather shy";

}

And the "is cookie trait for getting cookies
get -> 'last-visit', :$last-visit is cookie {
set-cookie 'last-visit', Date.today.yyyy-mm-dd;
content 'text/plain', $last-visit
?? "You last visited on $last-visit”
I'l "You did not visit before";

Request bodies

Different ways to get the body

request-body -> $body { ... }
request-body-text -> $text { ... }
request-body-blob -> $binary { ... }

request.body-byte-stream

Different ways to get the body

Do The Right Thing
request-body -> $body { ... }

Nlo P lololo\8 " BodyParserSelector and
BodyParser objects

Binary
request-body-blob -> $binary { ... }

Supply of bytes as they arrive over network
request.body-byte-stream

Default set of body parsers

application/x-www-form-urlencoded content type
multipart/form-data content type

application/json or *+json content type
text/* content type

If all else fails

Getting a JSON body

route {
The block is invoked with the JSON object as soon as it
has arrived over the network and been decoded (using
await so we don't block an 0OS thread)
PUT /reviews > 204 No Content response
put -> 'reviews' {
request-body -> %json {
say "Should save %json.raku()";

}

Signature-based unpacking/validation

route {
Ratings should be between 1 and 5
subset Rating of Int where 1..5;

Use signature to unpack the JSON, checking it along
the way. If there's no match, automatic 400 Bad Request
response.
PUT /reviews - 204 No Content | 400 Bad Request
put -> 'reviews' {
request-body -> (Rating :$rating!, Str :$comment) {
say "$rating / 5 ($comment)"”;
}

(But consider using OpenAPI for more complex or public APIs.)

A custom YAML body parser

use Cro::HTTP::BodyParsers;
use YAMLish;

class YAMLBodyParser does Cro::BodyParser {
method is-applicable(Cro::HTTP::Message $message --> Bool) {
with $message.content-type {
.type-and-subtype eq 'text/yaml’
}
else { False }

¥

method parse(Cro::HTTP::Message $message --> Promise) {
start load-yaml await $message.body-text

¥

Using the YAML body parser

route {

Specify that all requests processed by this router
should consider our YAML body parser
body-parser YAMLBodyParser;

Then this lot automatically works with YAML too!
subset Rating of Int where 1..5;

put

-> 'reviews' {

request-body -> (Rating :$rating!, Str :$comment) {
say "$rating / 5 ($comment)"”;

}

Forms

Cro: :WebApp: :Form

Aim to take the tedium out of dealing with
creating and handling web forms

Define the form as a class, using traits to
specify controls and some validations

Template built-in to render the form

Very new, not so mature as the rest
(True of March 2020, if reading months later, likely already not true)

Define the form

class Review does Cro::WebApp::Form {
has Str $.name;
has Int $.rating is required
is min(1) is max(5);
has Str $.comment is required
is multiline(rows => 3, cols => 80)
is maxlength(1000);

Write a couple of templates

submit-review.crotmp

<hl>Submit a review</hl>
<&form(.form)>

thankyou.crotmp

<h1l>Thank youl!</hl>
<p>Your opinion is valuable to you.</p>

Write some routes, and we're done!

Handle the initial request for the form
get -> 'submit-review' {
template 'submit-review.crotmp',
{ form => Review.empty };

}

Handle submitted data; if invalid, render the form again
post -> 'submit-review' {
form-data -> Review $form {
if $form.is-valid {
say "Save $form.raku()";
template 'thankyou.crotmp';

}
else {

template 'submit-review.crotmp', { :$form };
}

Use Bootstrap so it looks nicer

<:use Cro::WebApp::Template: :Bootstrap>
<html>
<head>
<&bs-head>
</head>
<body>
<|bs-container>
<h1l>Submit a review</h1l>
<&bs-form(.form)>
</ |>
</body>
</html>

Use Bootstrap so it looks nicer

Mozilla Firefox

localhost:20000/submitre. X Qg

& > @ @ localhost - @ o D

Submit a review

MName

jnthn

Rating

5

Comment

Wow, | can leave a review!

Save

Middleware

Ways to hook into the pipeline

Applied before any route matching takes place

Applies before running a matched route's handler
Applies after running a matched route's handler
Applies after routing, whether a route matched or not

Nothing to do with the router, applies to everything

Add cacheability headers to assets

route {
Add a cache-control header to everything route that is
handled by this route block.
after-matched {
cache-control :public, :max-age(180);

}

get -> 'css', *@path {
static 'static-content/css', @path
}
get -> 'js', *@path {
static 'static-content/js', @path
}
get -> 'images', *@path {
static 'static-content/images', @path

}

Render a template for 404 errors

route {
This must be after, since we want it to run when we
failed to match a route
after {
if .status == 404 {
template 'not-found.crotmp';

}

Block vs. class middleware

Specific to the router; can't be used at the server level
Can use the router functions
Get called with request or response as the topic
Re-use achieved by factoring out to a sub
Implemented in terms of class middleware

Can be used at server and router level
Can't use router functions
You get the request or response Supply
Re-use? Sure, it's just a class!
A bit less overhead

Randomly delay 10% of requests

use Cro: :HTTP::Middleware;

class DelayMonkey does Cro::HTTP::Middleware: :Request {
method process(Supply $requests --> Supply) {
supply whenever $requests -> $req {
if rand < 0.1 {
whenever Promise.in((1..5).pick) {
emit $req;

}
}
else {

emit $req;
}

Using DelayMonkey

route {
Insert the middleware by passing it to before (it's
possible with before-matched too)
before DelayMonkey;

Composing routers

Why not just one route block?

We'd probably prefer 10 focused route blocks of 100
lines each than one 1000 line route block!

We'd probably like to put cache control headers onto
our assets - but certainly not onto everything!

Do we really want to write 'shop ' 50 times for all 50
routes under /shop?

Flattening inclusion with include

Factor them out (sub could be in a module and exported)

sub assets() {
route {
after-matched {
cache-control :public, :max-age(180);

¥

get -> 'css', *@path {
static 'static-content/css', @path

}
}

Include them at the top level route block.
my $top-level = route {
include assets();

Flattening inclusion with include

b could be in a module and exported)

Factor them ¥

Compiled into a single route
af matcher - can factor out
without breaking routing

get -> 'css', *@path {
static 'static-content/css', @path

}
}

Include them at the top level route block.
my $top-level = route {
include assets();

Prefixing with include

Routes for the blog
sub blog() {

route {

get -> { ... }

get -> Int $post-id { ... }

get -> Int $post-id, 'comments' { ... }
}

¥

Host them under /blog
my $top-level = route {
include blog => blog();

More examples of include

my $top-level = route {
We can actually call include once and specify a whole
load of different mappings.
include
assets(),
blog => blog(),
When wanting multiple prefix segments, pass them
as a list; if you use a "/" in a string it means a
url-encoded "/".
<shop products> => products(),
<shop basket> => basket();

What you can't do with include

A route block using before or after...

sub cms() {
route {
aftter {
if .status == 404 {
template 'not-found.crotmp’;
}
}
}
}
...cannot be used with a flattening include, since there'd

be no way to know whether to run the middleware without
matching, but before/after are independent of that!
my $top-level = route {

include cms => cms(); # Error!

Instead, use delegate

A route block using before or after...

sub cms() {
route {
aftter {
if .status == 404 {
template 'not-found.crotmp’;
}
}
}
}
...can be used with delegate. Note that we need to say

that all routes under cms should be delegated, using *.

my $top-level = route {
delegate <cms *> => cms();

Instead, use delegate

A route block using before or af

sub cms() . f
e Makes a single entry into our route

a table, and the inner route block

does its own dispatch

}

...can be used with delegate. Note that we need to say
that all routes under cms should be delegated, using *.
my $top-level = route {

delegate <cms *> => cms();

Instead, use delegate

A route block using before or afte

sub cms
,ﬂouég In fact, the target need not be a route

eli block; it can be any Cro: : Transform that

maps HTTP requests into HTTP responses.

J

}

...can be used with delegate. Note that we need to say

that all routes under cms should be delegated, using *.

my $top-level = route {
delegate <cms *> => cms();

Sessions and auth

A session is just a class

It's most convenient if we arrange for our session object
to do the Cro::HTTP::Auth marker role. It's not mandatory,
but you'll have to work a little harder in your routes
if you don't.
my class ExampleSession does Cro::HTTP::Auth {

has Int $.views = 0;

method add-view() {
$!lviews++;

}

Add a session store, and we're done

route {
Session store is just a piece of middleware. It must
be applied with before, not before-matched, if we're
to use it to do auth-based routing based. There's also
various persistent alternatives.
before Cro::HTTP::Session: :InMemory[ExampleSession].new:
cookie-name => 'MY_TEST SITE';

Take the session as the first parameter (this is where
the Cro::HTTP::Auth marker comes in!)
get -> ExampleSession $session, 'count-views' {
$session.add-view();
content 'text/plain', "$session.views() view(s)";

Add a session store, and we're done

route {
Session store is just a piece of middleware. It must
be applied with before, not before-matched, if we're
to use it to do auth-based routing based. There's also
various persistent alternatives.
before Cro::HTTP::Session: :InMemory[ExampleSession].new:
cookie-name => 'MY_TEST SITE';

Take the session as the first parameter (this is where
the Cro::HTTP::Auth marker comes in!)
get -> ExampleSession $session, 'count-views' {

"$session.views() view(s)";

This is bound to whatever is in

request.auth (and that's what the
session middleware populates)

Setup for basic authentication

Again, a session class, which we'll have created with a
username on successful login.
my class ExampleSession does Cro::HTTP::Auth {

has Str $.username;

method logged-in() {
?$lusername

}
}

A class implementing the Cro::HTTP::Auth::Basic role,
providing the method that does the password check.

my class OurAuth does Cro::HTTP::Auth::Basic[ExampleSession,
"username’] {

method authenticate($user, $pass) {
$pass eq 'hunter2’

}

Use basic authentication

route {
Add our basic auth implementation as middleware.
before OurAuth.new(realm => 'Test site');

Subset type for a session where we're logged in (this
is not so important for basic auth, but when doing

form-based login would matter).

subset LoggedIn of ExampleSession where .logged-in;

Make sure we have a logged in user; automatic 401 if
we don't have one.
get -> LoggedIn $user, 'test' {

content 'text/plain', 'You are logged in';

}

WebSockets

Of course the demo is a chat app...

We'll send a HTML page that contains the WebSocket
JavaScript; it's in a Cro template to keep it out of
the route code.
get -> 'chat' {
template 'chat.crotmp';

}

The HTML / JavaScript

<script>
var name = window.prompt("Who are you?");
var ws = new WebSocket("ws://localhost:20000/chat/ws");
ws.onmessage = function (message) {
var div = document.createElement("div");
div.innerText = message.data;

document.getElementById('messages').appendChild(div);
}

function send() {
var textbox = document.getElementById('to-send');
ws.send("<" + name + "> " + textbox.value);
textbox.value = '';

J

}

</script>
<div id="messages"></div>
<form>
<input type="text" id="to-send" />
<button type="button" onclick="send()">Send</button>
</form>

The WebSocket handler

We use this to broadcast messages to all clients
my $chatter = Supplier.new;

WebSocket handler for the chat application
get -> 'chat', 'ws' {
web-socket -> $incoming {
supply {
whenever $incoming -> $ws-message {
whenever $ws-message.body-text {
$chatter.emit($);

}

}

whenever $chatter {
emit $§_;

}

The WebSocket handler

We use this to broadcast messages to all clients
my $chatter = Supplier.new;

WebSocket handler for the chat application
get -> 'chat', 'ws' {
web-socket -> $incoming {
supply {
whenever $incom
whenever $ws-ne
$chatterami

} A Supply of messages

} [] []
received from the clien
whenever $chatte eceived from the client

emit $§_;

- > $ws-message {
2. body-text {

}

The WebSocket handler

We use this to broadcast messages to all clients
my $chatter = Supplier.new;

WebSocket handler for the chat application
get -> 'chat', 'ws' {
web-socket -> $incoming {

supply {
whenever $incoming -> $ws-message {
whenever $
$chatters
}
} .
whenever $chatte RAALEEI R[N ITIEITGE
emit $_; us a message...
}
}

The WebSocket handler

We use this to broadcast messages to all clients
my $chatter = Supplier.new;

WebSocket handler for the chat application
get -> 'chat', 'ws' {
web-socket -> $incoming {
supply {
whenever $incoming -> $ws-message {
whenever $ws-message.body-text {
$chatter.emit($);

}
}
whenever $chatter . ;

emit $_; ...wait for its body text to
} arrive, and then...

The WebSocket handler

We use this to broadcast messages to all clients
my $chatter = Supplier.new;

WebSocket handler for the chat application
get -> 'chat', 'ws' {
web-socket -> $incoming {
supply {
whenever $incoming -> $ws-message {
whenever $ws-message.body-text {
$chatter.emit($);

}
}
whenever $chatter

emit $_; ...broadcast them to
} everyone

The WebSocket handler

We use this to broadcast messages to all clients
my $chatter = Supplier.new;

WebSocket handler for the chat application
get -> 'chat', 'ws' {
web-socket -> $incoming {
supply {
whenever $incoming -> $ws-message {
whenever $ws-message.body-text {
$chatter.emit($);

}
}
whenever $chatter {
emit $§_;
}
} Whenever any message is
} broadcast, send it to the client

Questions?

Learn more: https://cro.services/

